diff --git a/README.md b/README.md index b658df6..35a2888 100755 --- a/README.md +++ b/README.md @@ -1,129 +1,100 @@ # Welcome to ATMOS -The pyatmos package is an archive of scientific routines that aims to implement the estimation of atmospheric properties for various atmosphere models. Currently, feasible atmosphere models include: - -1. International Standard Atmosphere(ISA) Model up to 86km -2. NRLMSISE-00 +This package is an archive of scientific routines that implements the estimation of atmospheric properties for various atmosphere models, such as Exponential, COESA76, and NRLMSISE-00. The package mainly estimates density, temperature, pressure and other parameters of air at a set of specific altitudes. For atmosphere below 86 kilometers, it also calculates the speed of sound, viscosity, and thermal conductivity. ## How to install -pyatmos can be installed with +On Linux, macOS and Windows architectures, the binary wheels can be installed using pip by executing one of the following commands: ```sh pip install pyatmos +pip install pyatmos --upgrade # to upgrade a pre-existing installation ``` ## How to use -### International Standard Atmosphere - -Calculate the ISA at an altitude(default is geometric) of 10km. +#### Exponential ```python ->>> from pyatmos import isa ->>> isa(10) -{'temperature[K]': 223.25186489868483, - 'pressure[Pa]': 26499.756053713343, - 'density[kg/m^3]': 0.41350863360218376} +>>> from ATMOS.pyatmos import expo +>>> rhos_geom = expo([0,20,40,60,80]) # geometric altitudes by default +>>> print(rhos_geom) # [kg/m^3] +>>> rhos_geop = expo([0,20,40,60,80],'geopotential') # geopotential altitudes +>>> print(rhos_geop) + +[1.22500000e+00 7.76098911e-02 3.97200000e-03 3.20600000e-04 + 1.90500000e-05] +[1.22500000e+00 7.69385063e-02 3.84131212e-03 2.97747719e-04 + 1.59847603e-05] ``` -Calculate the ISA at a geopotential altitude of 50km. +#### COESA 1976 ```python ->>> isa(50,'geopotential') -{'temperature[K]': 270.65, - 'pressure[Pa]': 75.94476758456234, - 'density[kg/m^3]': 0.0009775244455727493} +>>> from ATMOS.pyatmos import coesa76 +>>> rhos_geom,Ts_geom,Ps_geom = coesa76([0,20,40,60,80]) +>>> print(rhos_geom) # [kg/m^3] +>>> rhos_geop,Ts_geop,Ps_geop = coesa76([0,20,40,60,80],'geopotential') +>>> print(rhos_geop) # [kg/m^3] +>>> rhos_geom,Ts_geom,Ps_geom = coesa76([100,300,500,700,900]) +>>> print(rhos_geom) # [kg/m^3] + +[1.22499916e+00 8.89079563e-02 3.99535051e-03 3.09628985e-04 + 1.84514759e-05] +[1.22499916e+00 8.80348036e-02 3.85100688e-03 2.88320680e-04 + 1.57005388e-05] +[5.60184300e-07 1.91512264e-11 5.21285933e-13 3.06944380e-14 + 5.75807856e-15] ``` -Calculate the ISA at 90km. +#### NRLMSISE-00 + +*Before using NRLMSISE-00, the space weather data needs to be prepared in advance.* ```python ->>> isa(90) -Exception: geometric altitude should be in [-0.611, 86.0] km ->>> isa(90,'geopotential') -Exception: geopotential altitude should be in [-0.610, 84.852] km -``` - -### NRLMSISE-00 - -Get the space weather data - -```python ->>> from pyatmos import download_sw,read_sw +>>> from ATMOS.pyatmos import download_sw,read_sw >>> # Download or update the space weather file from www.celestrak.com >>> swfile = download_sw() >>> # Read the space weather data >>> swdata = read_sw(swfile) -Updating the space weather data ... Finished ``` -Calculate the temperatures, densities **not** including anomalous oxygen using the NRLMSISE-00 model at 70km, 25 degrees latitude, 102 degrees longitude on the date October 5, 2015 at 03:00:00 UTC. +Calculate the temperature, density at [25N, 102E, 20km] at 03:00:00 UTC on October 5, 2015 with anomalous oxygen and 3h-geomagnetic index. ``` ->>> from pyatmos import nrlmsise00 +>>> from ATMOS.pyatmos import nrlmsise00 >>> # Set a specific time and location ->>> t = '2015-10-05 03:00:00' # time(UTC) ->>> lat,lon = 25,102 # latitude and longitude [degree] ->>> alt = 70 # altitude [km] ->>> para_input,para_output = nrlmsise00(t,lat,lon,alt,swdata) ->>> print(para_input,'\n') ->>> print(para_output) -{'Year': 2015, 'DayOfYear': 278, 'SecondOfDay': 10800.0, 'Latitude[deg]': 25, 'Longitude[deg]': 102, 'Altitude[km]': 70, 'LocalSolarTime[hours]': 9.8, 'f107Average[10^-22 W/m^2/Hz]': 150, 'f107Daily[10^-22 W/m^2/Hz]': 150, 'ApDaily': 4, 'Ap3Hourly': array([4, 4, 4, 4, 4, 4, 4])} +>>> t = '2015-10-05 03:00:00' # time(UTC) +>>> lat,lon,alt = 25,102,600 # latitude, longitude in [degree], and altitude in [km] +>>> params,rho,T,nd = nrlmsise00(t,(lat,lon,alt),swdata) # aphmode=True +>>> print(params) +>>> print(rho) +>>> print(T) +>>> print(nd) -{'Density': {'He[1/m^3]': 9100292488300570.0, 'O[1/m^3]': 0, 'N2[1/m^3]': 1.3439413974205876e+21, 'O2[1/m^3]': 3.52551376755781e+20, 'AR[1/m^3]': 1.6044163757370681e+19, 'H[1/m^3]': 0, 'N[1/m^3]': 0, 'ANM O[1/m^3]': 0, 'RHO[kg/m^3]': 8.225931818480755e-05}, 'Temperature': {'TINF[K]': 1027.3184649, 'TG[K]': 219.9649472491653}} +{'Year': 2015, 'DOY': 278, 'SOD': 10800.0, 'Lat': 25, 'Lon': 102, 'Alt': 600, 'LST': 9.8, 'f107A': 104.4, 'f107D': 82.6, 'ApD': 18, 'Ap3H': array([18. , 22. , 22. , 22. , 7. , 15.25 , 9.375])} +6.416602651204796e-14 +(853.466244160143, 853.4647165799171) +{'He': 2388916051039.6826, 'O': 1758109067905.8027, 'N2': 2866987110.5606275, 'O2': 22411077.605527952, 'Ar': 4351.013995142538, 'H': 155026672753.3203, 'N': 46719306249.863495, 'ANM O': 4920851253.780525} ``` -Calculate the temperatures, densities **not** including anomalous oxygen using the NRLMSISE-00 model at 100km, -65 degrees latitude, -120 degrees longitude on the date July 8, 2004 at 10:30:50 UTC. - -``` ->>> t = '2004-07-08 10:30:50' ->>> lat,lon,alt = -65,-120,100 ->>> para_input,para_output = nrlmsise00(t,lat,lon,alt,swdata) ->>> print(para_input,'\n') ->>> print(para_output) -{'Year': 2004, 'DayOfYear': 190, 'SecondOfDay': 37850.0, 'Latitude[deg]': -65, 'Longitude[deg]': -120, 'Altitude[km]': 100, 'LocalSolarTime[hours]': 2.5138888888888893, 'f107Average[10^-22 W/m^2/Hz]': 109.0, 'f107Daily[10^-22 W/m^2/Hz]': 79.3, 'ApDaily': 2, 'Ap3Hourly': array([2. , 2. , 2. , 2. , 2. , 3.125, 4.625])} - -{'Density': {'He[1/m^3]': 119477307274636.89, 'O[1/m^3]': 4.1658304136233e+17, 'N2[1/m^3]': 7.521248904485598e+18, 'O2[1/m^3]': 1.7444969074975662e+18, 'AR[1/m^3]': 7.739495767665198e+16, 'H[1/m^3]': 22215754381448.5, 'N[1/m^3]': 152814261016.3964, 'ANM O[1/m^3]': 1.8278224834873257e-37, 'RHO[kg/m^3]': 4.584596293339505e-07}, 'Temperature': {'TINF[K]': 1027.3184649, 'TG[K]': 192.5868649143824}} -``` - -Calculate the temperatures, densities including anomalous oxygen using the NRLMSISE-00 model at 500km, 85 degrees latitude, 210 degrees longitude on the date February 15, 2010 at 12:18:37 UTC. - -``` ->>> t = '2010-02-15 12:18:37' ->>> lat,lon,alt = 85,210,500 ->>> para_input,para_output = nrlmsise00(t,lat,lon,alt,swdata,omode='Oxygen') ->>> print(para_input,'\n') ->>> print(para_output) -{'Year': 2010, 'DayOfYear': 46, 'SecondOfDay': 44317.0, 'Latitude[deg]': 85, 'Longitude[deg]': 210, 'Altitude[km]': 500, 'LocalSolarTime[hours]': 2.310277777777779, 'f107Average[10^-22 W/m^2/Hz]': 83.4, 'f107Daily[10^-22 W/m^2/Hz]': 89.4, 'ApDaily': 14, 'Ap3Hourly': array([14. , 5. , 7. , 6. , 15. , 5.375, 4. ])} - -{'Density': {'He[1/m^3]': 2830075020953.2334, 'O[1/m^3]': 5866534735436.941, 'N2[1/m^3]': 59516979995.87239, 'O2[1/m^3]': 1558775273.2950978, 'AR[1/m^3]': 825564.7467165776, 'H[1/m^3]': 142697077779.00586, 'N[1/m^3]': 53473812381.891624, 'ANM O[1/m^3]': 4258921381.0652237, 'RHO[kg/m^3]': 1.790487924033088e-13}, 'Temperature': {'TINF[K]': 850.5598890315023, 'TG[K]': 850.5507885501303}} -``` - -Calculate the temperatures, densities including anomalous oxygen using the NRLMSISE-00 model at 900km, 3 degrees latitude, 5 degrees longitude on the date August 20, 2019 at 23:10:59 UTC. It uses not only Daily AP but also 3-hour AP magnetic index. - -``` ->>> t = '2019-08-20 23:10:59' ->>> lat,lon,alt = 3,5,900 ->>> para_input,para_output = nrlmsise00(t,lat,lon,alt,swdata,omode='Oxygen',aphmode = 'Aph') ->>> print(para_input,'\n') ->>> print(para_output) -{'Year': 2019, 'DayOfYear': 232, 'SecondOfDay': 83459.0, 'Latitude[deg]': 3, 'Longitude[deg]': 5, 'Altitude[km]': 900, 'LocalSolarTime[hours]': 23.51638888888889, 'f107Average[10^-22 W/m^2/Hz]': 67.4, 'f107Daily[10^-22 W/m^2/Hz]': 67.7, 'ApDaily': 4, 'Ap3Hourly': array([4. , 4. , 3. , 3. , 5. , 3.625, 3.5 ])} - -{'Density': {'He[1/m^3]': 74934329990.0412, 'O[1/m^3]': 71368139.39199762, 'N2[1/m^3]': 104.72048033793158, 'O2[1/m^3]': 0.09392848471935447, 'AR[1/m^3]': 1.3231114543012155e-07, 'H[1/m^3]': 207405192640.34592, 'N[1/m^3]': 3785341.821909535, 'ANM O[1/m^3]': 1794317839.638502, 'RHO[kg/m^3]': 8.914971667362366e-16}, 'Temperature': {'TINF[K]': 646.8157488121493, 'TG[K]': 646.8157488108872}} -``` +**Note: The range of longitude is [0,360] by default, and the west longitude can also be expressed as a negative number.** ## Change log -- **1.1.2 — Jul 26, 2020** - - Added progress bar for downloading data +- **1.2.0 — Jan 22, 2021** + - Added **Exponential Atmosphere** up to 1000km + - Added **Committee on Extension to the Standard Atmosphere(COESA)** up to 1000km + - Completed part of the help documentation for NRLMSISE-00 + - Improved the code structure to make it easier to read +- **1.1.2 — Jul 26, 2020** + - Added colored-progress bar for downloading data - **1.1.0 — Mar 29, 2020** - - Added the International Standard Atmosphere(ISA) Model up to 86km + - Added the International Standard Atmosphere(ISA) Model up to 86kms ## Next release -- Complete the help documentation -- Improve the code structure to make it easier to read -- Add other atmospheric models, such as the **U.S. Standard Atmosphere 1976(USSA1976)** or **Committee on Extension to the Standard Atmosphere(COESA)** up to 1000km, **Unofficial Australian Standard Atmosphere 2000(UASA2000)**, and the **Jacchia-Bowman 2008 Empirical Thermospheric Density Model(JB2008)** +- Complete the help documentation for NRLMSISE-00 +- Add other atmospheric models, such as the **Earth Global Reference Atmospheric Model(Earth-GRAM) 2016**, and the **Jacchia-Bowman 2008 Empirical Thermospheric Density Model(JB2008)** ## Reference @@ -132,10 +103,12 @@ Calculate the temperatures, densities including anomalous oxygen using the NRLMS - https://gist.github.com/buzzerrookie/5b6438c603eabf13d07e - https://ww2.mathworks.cn/help/aerotbx/ug/atmosisa.html -* [Original Fortran and C code](https://ccmc.gsfc.nasa.gov/pub/modelweb/atmospheric/msis/) -* [MSISE-00 in Python and Matlab](https://github.com/space-physics/msise00) -* [NRLMSISE-00 Atmosphere Model - Matlab](https://ww2.mathworks.cn/matlabcentral/fileexchange/56253-nrlmsise-00-atmosphere-model?requestedDomain=zh) -* [NRLMSISE-00 Atmosphere Model - Aerospace Blockset](https://www.mathworks.com/help/aeroblks/nrlmsise00atmospheremodel.html?requestedDomain=) -* [NRLMSISE-00 Atmosphere Model - CCMC](https://ccmc.gsfc.nasa.gov/modelweb/models/nrlmsise00.php) -* [NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues](http://onlinelibrary.wiley.com/doi/10.1029/2002JA009430/pdf) +- [Original Fortran and C code](https://ccmc.gsfc.nasa.gov/pub/modelweb/atmospheric/msis/) +- [MSISE-00 in Python and Matlab](https://github.com/space-physics/msise00) +- [NRLMSISE-00 Atmosphere Model - Matlab](https://ww2.mathworks.cn/matlabcentral/fileexchange/56253-nrlmsise-00-atmosphere-model?requestedDomain=zh) +- [NRLMSISE-00 Atmosphere Model - Aerospace Blockset](https://www.mathworks.com/help/aeroblks/nrlmsise00atmospheremodel.html?requestedDomain=) +- [NRLMSISE-00 Atmosphere Model - CCMC](https://ccmc.gsfc.nasa.gov/modelweb/models/nrlmsise00.php) +- [NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues](http://onlinelibrary.wiley.com/doi/10.1029/2002JA009430/pdf) +- [ATMOSPHERIC MODELS](http://www.braeunig.us/space/atmmodel.htm) +- [poliastro-Atmosphere module](https://docs.poliastro.space/en/stable/api/safe/atmosphere/atmosphere_index.html?highlight=nrlmsise#famous-atmospheric-models)