Add the USSA 1976 up to 86km
This commit is contained in:
parent
373017c5cf
commit
e54045623c
155
README.md
155
README.md
@ -1,102 +1,135 @@
|
||||
# Welcome to ATMOS
|
||||
|
||||
The pyatmos package is an archive of scientific routines that can be used to handle atmospheric models. Currently, only nrlmsise00 is feasible.
|
||||
The pyatmos package is an archive of scientific routines that aims to implement the estimation of atmospheric properties for various atmosphere models. Currently, feasible atmosphere models include:
|
||||
|
||||
## How to Install
|
||||
1. International Standard Atmosphere(ISA) Model up to 86km
|
||||
2. NRLMSISE-00
|
||||
|
||||
## How to install
|
||||
|
||||
pyatmos can be installed with
|
||||
|
||||
```sh
|
||||
pip install pyatmos
|
||||
```
|
||||
|
||||
## How to Use
|
||||
## How to use
|
||||
|
||||
### International Standard Atmosphere
|
||||
|
||||
Calculate the ISA at an altitude(default is geometric) of 10km.
|
||||
|
||||
```python
|
||||
from pyatmos.msise import download_sw,read_sw
|
||||
from pyatmos.atmosclasses import Coordinate
|
||||
|
||||
# Download or update the space weather file from www.celestrak.com
|
||||
swfile = download_sw()
|
||||
# Read the space weather data
|
||||
sw_obs_pre = read_sw(swfile)
|
||||
>>> from pyatmos import isa
|
||||
>>> isa(10)
|
||||
{'temperature[K]': 223.25186489868483,
|
||||
'pressure[Pa]': 26499.756053713343,
|
||||
'density[kg/m^3]': 0.41350863360218376}
|
||||
```
|
||||
|
||||
```
|
||||
# Test 1
|
||||
# Set a specific time and location
|
||||
t = '2015-10-05 03:00:00' # time(UTC)
|
||||
lat,lon = 25,102 # latitude and longitude [degree]
|
||||
alt = 70 # altitude [km]
|
||||
# Initialize a coordinate instance by a space-time point
|
||||
st = Coordinate(t,lat,lon,alt)
|
||||
Calculate the ISA at a geopotential altitude of 50km.
|
||||
|
||||
para_input,para_output = st.nrlmsise00(sw_obs_pre)
|
||||
print(para_input,'\n')
|
||||
print(para_output)
|
||||
```python
|
||||
>>> isa(50,'geopotential')
|
||||
{'temperature[K]': 270.65,
|
||||
'pressure[Pa]': 75.94476758456234,
|
||||
'density[kg/m^3]': 0.0009775244455727493}
|
||||
```
|
||||
|
||||
```
|
||||
{'doy': 278, 'year': 2015, 'sec': 10800.0, 'alt': 70, 'g_lat': 25, 'g_long': 102, 'lst': 9.8, 'f107A': 150, 'f107': 150, 'ap': 4, 'ap_a': array([4, 4, 4, 4, 4, 4, 4])}
|
||||
Calculate the ISA at 90km.
|
||||
|
||||
{'d': {'He': 9100292488300570.0, 'O': 0, 'N2': 1.3439413974205876e+21, 'O2': 3.52551376755781e+20, 'AR': 1.6044163757370681e+19, 'RHO': 8.225931818480755e-05, 'H': 0, 'N': 0, 'ANM O': 0}, 't': {'TINF': 1027.3184649, 'TG': 219.9649472491653}}
|
||||
```python
|
||||
>>> isa(90)
|
||||
Exception: geometric altitude should be in [-0.611, 86.0] km
|
||||
>>> isa(90,'geopotential')
|
||||
Exception: geopotential altitude should be in [-0.610, 84.852] km
|
||||
```
|
||||
|
||||
```
|
||||
# Test 2
|
||||
t = '2004-07-08 10:30:50'
|
||||
lat,lon,alt = -65,-120,100
|
||||
st = Coordinate(t,lat,lon,alt)
|
||||
para_input,para_output = st.nrlmsise00(sw_obs_pre)
|
||||
print(para_input,'\n')
|
||||
print(para_output)
|
||||
### NRLMSISE-00
|
||||
|
||||
Get the space weather data
|
||||
|
||||
```python
|
||||
>>> from pyatmos import download_sw,read_sw
|
||||
>>> # Download or update the space weather file from www.celestrak.com
|
||||
>>> swfile = download_sw()
|
||||
>>> # Read the space weather data
|
||||
>>> swdata = read_sw(swfile)
|
||||
Updating the space weather data ... Finished
|
||||
```
|
||||
|
||||
```
|
||||
{'doy': 190, 'year': 2004, 'sec': 37850.0, 'alt': 100, 'g_lat': -65, 'g_long': -120, 'lst': 2.5138888888888893, 'f107A': 109.0, 'f107': 79.3, 'ap': 2, 'ap_a': array([2. , 2. , 2. , 2. , 2. , 3.125, 4.625])}
|
||||
|
||||
{'d': {'He': 119477307274636.89, 'O': 4.1658304136233e+17, 'N2': 7.521248904485598e+18, 'O2': 1.7444969074975662e+18, 'AR': 7.739495767665198e+16, 'RHO': 4.584596293339505e-07, 'H': 22215754381448.5, 'N': 152814261016.3964, 'ANM O': 1.8278224834873257e-37}, 't': {'TINF': 1027.3184649, 'TG': 192.5868649143824}}
|
||||
```
|
||||
Calculate the temperatures, densities not including anomalous oxygen using the NRLMSISE-00 model at 70km, 25 degrees latitude, 102 degrees longitude on the date October 5, 2015 at 03:00:00 UTC.
|
||||
|
||||
```
|
||||
# Test 3
|
||||
t = '2010-02-15 12:18:37'
|
||||
lat,lon,alt = 85,210,500
|
||||
st = Coordinate(t,lat,lon,alt)
|
||||
para_input,para_output = st.nrlmsise00(sw_obs_pre,'NoOxygen','Aph')
|
||||
print(para_input,'\n')
|
||||
print(para_output)
|
||||
>>> from pyatmos import nrlmsise00
|
||||
>>> # Set a specific time and location
|
||||
>>> t = '2015-10-05 03:00:00' # time(UTC)
|
||||
>>> lat,lon = 25,102 # latitude and longitude [degree]
|
||||
>>> alt = 70 # altitude [km]
|
||||
>>> para_input,para_output = nrlmsise00(t,lat,lon,alt,swdata)
|
||||
>>> print(para_input,'\n')
|
||||
>>> print(para_output)
|
||||
{'Year': 2015, 'DayOfYear': 278, 'SecondOfDay': 10800.0, 'Latitude[deg]': 25, 'Longitude[deg]': 102, 'Altitude[km]': 70, 'LocalSolarTime[hours]': 9.8, 'f107Average[10^-22 W/m^2/Hz]': 150, 'f107Daily[10^-22 W/m^2/Hz]': 150, 'ApDaily': 4, 'Ap3Hourly': array([4, 4, 4, 4, 4, 4, 4])}
|
||||
|
||||
{'Density': {'He[1/m^3]': 9100292488300570.0, 'O[1/m^3]': 0, 'N2[1/m^3]': 1.3439413974205876e+21, 'O2[1/m^3]': 3.52551376755781e+20, 'AR[1/m^3]': 1.6044163757370681e+19, 'H[1/m^3]': 0, 'N[1/m^3]': 0, 'ANM O[1/m^3]': 0, 'RHO[kg/m^3]': 8.225931818480755e-05}, 'Temperature': {'TINF[K]': 1027.3184649, 'TG[K]': 219.9649472491653}}
|
||||
```
|
||||
|
||||
```
|
||||
{'doy': 46, 'year': 2010, 'sec': 44317.0, 'alt': 500, 'g_lat': 85, 'g_long': 210, 'lst': 2.310277777777779, 'f107A': 83.4, 'f107': 89.4, 'ap': 14, 'ap_a': array([14. , 5. , 7. , 6. , 15. , 5.375, 4. ])}
|
||||
|
||||
{'d': {'He': 3314507585382.5425, 'O': 3855595951659.0874, 'N2': 19285497858.028534, 'O2': 395599656.3119481, 'AR': 146073.85956102316, 'RHO': 1.2650700238089615e-13, 'H': 171775437382.8238, 'N': 38359828672.39737, 'ANM O': 5345258193.554493}, 't': {'TINF': 776.3155804924045, 'TG': 776.3139192714452}}
|
||||
```
|
||||
Calculate the temperatures, densities not including anomalous oxygen using the NRLMSISE-00 model at 100km, -65 degrees latitude, -120 degrees longitude on the date July 8, 2004 at 10:30:50 UTC.
|
||||
|
||||
```
|
||||
# Test 4
|
||||
t = '2019-08-20 23:10:59'
|
||||
lat,lon,alt = 3,5,900
|
||||
st = Coordinate(t,lat,lon,alt)
|
||||
para_input,para_output = st.nrlmsise00(sw_obs_pre,aphmode = 'Aph')
|
||||
print(para_input,'\n')
|
||||
print(para_output)
|
||||
>>> t = '2004-07-08 10:30:50'
|
||||
>>> lat,lon,alt = -65,-120,100
|
||||
>>> para_input,para_output = nrlmsise00(t,lat,lon,alt,swdata)
|
||||
>>> print(para_input,'\n')
|
||||
>>> print(para_output)
|
||||
{'Year': 2004, 'DayOfYear': 190, 'SecondOfDay': 37850.0, 'Latitude[deg]': -65, 'Longitude[deg]': -120, 'Altitude[km]': 100, 'LocalSolarTime[hours]': 2.5138888888888893, 'f107Average[10^-22 W/m^2/Hz]': 109.0, 'f107Daily[10^-22 W/m^2/Hz]': 79.3, 'ApDaily': 2, 'Ap3Hourly': array([2. , 2. , 2. , 2. , 2. , 3.125, 4.625])}
|
||||
|
||||
{'Density': {'He[1/m^3]': 119477307274636.89, 'O[1/m^3]': 4.1658304136233e+17, 'N2[1/m^3]': 7.521248904485598e+18, 'O2[1/m^3]': 1.7444969074975662e+18, 'AR[1/m^3]': 7.739495767665198e+16, 'H[1/m^3]': 22215754381448.5, 'N[1/m^3]': 152814261016.3964, 'ANM O[1/m^3]': 1.8278224834873257e-37, 'RHO[kg/m^3]': 4.584596293339505e-07}, 'Temperature': {'TINF[K]': 1027.3184649, 'TG[K]': 192.5868649143824}}
|
||||
```
|
||||
|
||||
```
|
||||
{'doy': 232, 'year': 2019, 'sec': 83459.0, 'alt': 900, 'g_lat': 3, 'g_long': 5, 'lst': 23.51638888888889, 'f107A': 67.4, 'f107': 67.7, 'ap': 4, 'ap_a': array([4. , 4. , 3. , 3. , 5. , 3.625, 3.5 ])}
|
||||
Calculate the temperatures, densities including anomalous oxygen using the NRLMSISE-00 model at 500km, 85 degrees latitude, 210 degrees longitude on the date February 15, 2010 at 12:18:37 UTC.
|
||||
|
||||
{'d': {'He': 74934329990.0412, 'O': 71368139.39199762, 'N2': 104.72048033793158, 'O2': 0.09392848471935447, 'AR': 1.3231114543012155e-07, 'RHO': 8.914971667362366e-16, 'H': 207405192640.34592, 'N': 3785341.821909535, 'ANM O': 1794317839.638502}, 't': {'TINF': 646.8157488121493, 'TG': 646.8157488108872}}
|
||||
```
|
||||
>>> t = '2010-02-15 12:18:37'
|
||||
>>> lat,lon,alt = 85,210,500
|
||||
>>> para_input,para_output = nrlmsise00(t,lat,lon,alt,swdata,omode='Oxygen')
|
||||
>>> print(para_input,'\n')
|
||||
>>> print(para_output)
|
||||
{'Year': 2010, 'DayOfYear': 46, 'SecondOfDay': 44317.0, 'Latitude[deg]': 85, 'Longitude[deg]': 210, 'Altitude[km]': 500, 'LocalSolarTime[hours]': 2.310277777777779, 'f107Average[10^-22 W/m^2/Hz]': 83.4, 'f107Daily[10^-22 W/m^2/Hz]': 89.4, 'ApDaily': 14, 'Ap3Hourly': array([14. , 5. , 7. , 6. , 15. , 5.375, 4. ])}
|
||||
|
||||
{'Density': {'He[1/m^3]': 2830075020953.2334, 'O[1/m^3]': 5866534735436.941, 'N2[1/m^3]': 59516979995.87239, 'O2[1/m^3]': 1558775273.2950978, 'AR[1/m^3]': 825564.7467165776, 'H[1/m^3]': 142697077779.00586, 'N[1/m^3]': 53473812381.891624, 'ANM O[1/m^3]': 4258921381.0652237, 'RHO[kg/m^3]': 1.790487924033088e-13}, 'Temperature': {'TINF[K]': 850.5598890315023, 'TG[K]': 850.5507885501303}}
|
||||
```
|
||||
|
||||
For more details, please refer to `st.nrlmsise00?`.
|
||||
Calculate the temperatures, densities including anomalous oxygen using the NRLMSISE-00 model at 900km, 3 degrees latitude, 5 degrees longitude on the date August 20, 2019 at 23:10:59 UTC. It uses not only Daily AP but also 3-hour AP magnetic index.
|
||||
|
||||
```
|
||||
>>> t = '2019-08-20 23:10:59'
|
||||
>>> lat,lon,alt = 3,5,900
|
||||
>>> para_input,para_output = nrlmsise00(t,lat,lon,alt,swdata,omode='Oxygen',aphmode = 'Aph')
|
||||
>>> print(para_input,'\n')
|
||||
>>> print(para_output)
|
||||
{'Year': 2019, 'DayOfYear': 232, 'SecondOfDay': 83459.0, 'Latitude[deg]': 3, 'Longitude[deg]': 5, 'Altitude[km]': 900, 'LocalSolarTime[hours]': 23.51638888888889, 'f107Average[10^-22 W/m^2/Hz]': 67.4, 'f107Daily[10^-22 W/m^2/Hz]': 67.7, 'ApDaily': 4, 'Ap3Hourly': array([4. , 4. , 3. , 3. , 5. , 3.625, 3.5 ])}
|
||||
|
||||
{'Density': {'He[1/m^3]': 74934329990.0412, 'O[1/m^3]': 71368139.39199762, 'N2[1/m^3]': 104.72048033793158, 'O2[1/m^3]': 0.09392848471935447, 'AR[1/m^3]': 1.3231114543012155e-07, 'H[1/m^3]': 207405192640.34592, 'N[1/m^3]': 3785341.821909535, 'ANM O[1/m^3]': 1794317839.638502, 'RHO[kg/m^3]': 8.914971667362366e-16}, 'Temperature': {'TINF[K]': 646.8157488121493, 'TG[K]': 646.8157488108872}}
|
||||
```
|
||||
|
||||
## Change log
|
||||
- **1.1.0 — Mar 29, 2020**
|
||||
- Added the International Standard Atmosphere(ISA) Model up to 86kms
|
||||
|
||||
## Next release
|
||||
|
||||
- Complete the help documentation
|
||||
- Improve the code structure to make it easier to read
|
||||
- Add other atmospheric models
|
||||
- Add other atmospheric models, such as the **U.S. Standard Atmosphere 1976(USSA1976)** or **Committee on Extension to the Standard Atmosphere(COESA)** up to 1000km, **Unofficial Australian Standard Atmosphere 2000(UASA2000)**, and the **Jacchia-Bowman 2008 Empirical Thermospheric Density Model(JB2008)**
|
||||
|
||||
## Reference
|
||||
|
||||
- U.S. Standard Atmosphere, 1976, U.S. Government Printing Office, Washington, D.C.
|
||||
- [Public Domain Aeronautical Software](http://www.pdas.com/atmos.html)
|
||||
- https://gist.github.com/buzzerrookie/5b6438c603eabf13d07e
|
||||
- https://ww2.mathworks.cn/help/aerotbx/ug/atmosisa.html
|
||||
|
||||
* [Original Fortran and C code](https://ccmc.gsfc.nasa.gov/pub/modelweb/atmospheric/msis/)
|
||||
* [MSISE-00 in Python and Matlab](https://github.com/space-physics/msise00)
|
||||
* [NRLMSISE-00 Atmosphere Model - Matlab](https://ww2.mathworks.cn/matlabcentral/fileexchange/56253-nrlmsise-00-atmosphere-model?requestedDomain=zh)
|
||||
|
BIN
pyatmos/.DS_Store
vendored
BIN
pyatmos/.DS_Store
vendored
Binary file not shown.
@ -1022,7 +1022,7 @@ def gts7(inputp,flags,gsurf,re):
|
||||
|
||||
# ============================ nrlmsise00 =========================== #
|
||||
|
||||
def nrlmsise00(t,lat,lon,alt,SW_OBS_PRE,omode='Oxygen',aphmode='NoAph'):
|
||||
def nrlmsise00(t,lat,lon,alt,SW_OBS_PRE,omode='NoOxygen',aphmode='NoAph'):
|
||||
t = Time(t)
|
||||
lon_wrap = wraplon(lon)
|
||||
t_yday = t.yday.split(':')
|
||||
|
Loading…
x
Reference in New Issue
Block a user