import numpy as np from datetime import datetime,timedelta import pandas as pd from os import path,makedirs,remove from pathlib import Path from ..utils.try_download import wget_download def download_sw_nrlmsise00(direc=None): ''' Download or update the space weather data from www.celestrak.com Usage: swfile = download_sw([direc]) Inputs: direc -> [str, optional] Directory for storing the space weather data Outputs: swfile -> [str] Path of the space weather data Examples: >>> swfile = download_sw() >>> swfile = download_sw('sw-data/') ''' if direc is None: home = str(Path.home()) direc = home + '/src/sw-data/' swfile = direc + 'SW-All.csv' url = 'https://www.celestrak.com/SpaceData/SW-All.csv' if not path.exists(direc): makedirs(direc) if not path.exists(swfile): desc = "Downloading the Space Weather file '{:s}' from CELESTRAK".format('SW-All.csv') wget_download(url,swfile,desc) else: modified_time = datetime.fromtimestamp(path.getmtime(swfile)) if datetime.now() > modified_time + timedelta(days=7): remove(swfile) desc = "Updating the Space Weather file '{:s}' from CELESTRAK".format('SW-All.csv') wget_download(url,swfile,desc) else: print("The Space Weather file '{:s}' in {:s} is already the latest.".format('SW-All.csv',direc)) return swfile def read_sw_nrlmsise00(swfile): ''' Parse and read the space weather data Usage: sw_obs_pre = read_sw_nrlmsise00(swfile) Inputs: swfile -> [str] Path of the space weather data Outputs: sw_obs_pre -> [2d str array] Content of the space weather data Examples: >>> swfile = 'sw-data/SW-All.csv' >>> sw_obs_pre = read_sw(swfile) >>> print(sw_obs_pre) [['2020' '01' '07' ... '72.4' '68.0' '71.0'] ['2020' '01' '06' ... '72.4' '68.1' '70.9'] ... ... ['1957' '10' '02' ... '253.3' '267.4' '231.7'] ['1957' '10' '01' ... '269.3' '266.6' '230.9']] ''' sw_df = pd.read_csv(swfile) sw_df.dropna(subset=['C9'],inplace=True) # Sort from newest date to past sw_df.sort_values(by=['DATE'],ascending=False,inplace=True) sw_df.reset_index(drop=True,inplace=True) return sw_df def get_sw(sw_df,t_ymd,hour): ''' Extract the necessary parameters describing the solar activity and geomagnetic activity from the space weather data. Usage: f107A,f107,ap,aph = get_sw(SW_OBS_PRE,t_ymd,hour) Inputs: SW_OBS_PRE -> [2d str array] Content of the space weather data t_ymd -> [str array or list] ['year','month','day'] hour -> [] Outputs: f107A -> [float] 81-day average of F10.7 flux f107 -> [float] daily F10.7 flux for previous day ap -> [int] daily magnetic index aph -> [float array] 3-hour magnetic index Examples: >>> f107A,f107,ap,aph = get_sw(SW_OBS_PRE,t_ymd,hour) ''' ymds = sw_df['DATE'] j_, = np.where(sw_df['DATE'] == t_ymd) j = j_[0] f107A,f107,ap = sw_df.iloc[j]['F10.7_OBS_CENTER81'],sw_df.iloc[j+1]['F10.7_OBS'],sw_df.iloc[j]['AP_AVG'] aph_tmp_b0 = sw_df.iloc[j]['AP1':'AP8'] i = int(np.floor_divide(hour,3)) ap_c = aph_tmp_b0[i] aph_tmp_b1 = sw_df.iloc[j+1]['AP1':'AP8'] aph_tmp_b2 = sw_df.iloc[j+2]['AP1':'AP8'] aph_tmp_b3 = sw_df.iloc[j+3]['AP1':'AP8'] aph_tmp = np.hstack((aph_tmp_b3,aph_tmp_b2,aph_tmp_b1,aph_tmp_b0))[::-1] apc_index = 7-i aph_c369 = aph_tmp[apc_index:apc_index+4] aph_1233 = np.average(aph_tmp[apc_index+4:apc_index+12]) aph_3657 = np.average(aph_tmp[apc_index+12:apc_index+20]) aph = np.hstack((ap,aph_c369,aph_1233,aph_3657)) return f107A,f107,ap,aph