879 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			879 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| import numpy as np
 | |
| from scipy.interpolate import CubicSpline
 | |
| from pyshtools.legendre import PLegendreA,PlmIndex
 | |
| import pkg_resources
 | |
| 
 | |
| def nrlmsis00_data():
 | |
|     '''
 | |
|     Read the data block from nrlmsis00_data.npz
 | |
|     ''' 
 | |
|     data_path = pkg_resources.resource_filename('pyatmos', 'data/')
 | |
|     data = np.load(data_path+'nrlmsis00_data.npz')
 | |
|     pt,pd,ps,pdl = data['pt'],data['pd'],data['ps'],data['pdl']
 | |
|     ptm,pdm,ptl,pma = data['ptm'],data['pdm'],data['ptl'],data['pma']
 | |
|     sam,pavgm = data['sam'],data['pavgm']
 | |
|     return pt,pd,ps,pdl,ptm,pdm,ptl,pma,sam,pavgm
 | |
| 
 | |
| def tselec(switches):
 | |
|     flags = {'sw':np.zeros(23),'swc':np.zeros(23)}
 | |
|     for i in range(23):
 | |
|         if i != 8:
 | |
|             if switches[i] == 1:
 | |
|                 flags['sw'][i] = 1
 | |
|             else:
 | |
|                 flags['sw'][i] = 0
 | |
|             if switches[i] > 0:
 | |
|                 flags['swc'][i] = 1
 | |
|             else:
 | |
|                 flags['swc'][i] = 0
 | |
|         else:
 | |
|             flags['sw'][i] = switches[i]
 | |
|             flags['swc'][i] = switches[i]
 | |
|     return flags  
 | |
| 
 | |
| def glatf(lat):
 | |
|     c2 = np.cos(2*np.deg2rad(lat))
 | |
|     gv = 980.616*(1 - 0.0026373*c2)
 | |
|     reff = 2*gv/(3.085462E-6 + 2.27E-9*c2)*1E-5
 | |
|     return gv,reff
 | |
| 
 | |
| def ccor(alt,r,h1,zh):
 | |
|     e = (alt - zh)/h1
 | |
|     if e > 70:
 | |
|         return 1
 | |
|     elif e < -70:
 | |
|         return np.exp(r)
 | |
|     else:
 | |
|         return np.exp(r/(1 + np.exp(e)))
 | |
| 
 | |
| def ccor2(alt,r,h1,zh,h2):     
 | |
|     e1 = (alt - zh)/h1
 | |
|     e2 = (alt - zh)/h2
 | |
|     if e1 > 70 or e2 > 70:
 | |
|         return 1
 | |
|     if e1 < -70 and e2 < -70:
 | |
|         return np.exp(r)
 | |
|     ex1,ex2 = np.exp([e1,e2])
 | |
|     ccor2v = r/(1 + 0.5*(ex1 + ex2))
 | |
|     return np.exp(ccor2v)
 | |
| 
 | |
| def scalh(alt,xm,temp,gsurf,re):
 | |
|     rgas = 831.4
 | |
|     g = rgas*temp/(gsurf/(1 + alt/re)**2*xm)
 | |
|     return g
 | |
| 
 | |
| def dnet(dd,dm,zhm,xmm,xm):
 | |
|     '''
 | |
|     Turbopause correction for msis models
 | |
|     '''      
 | |
|     a  = zhm/(xmm - xm)
 | |
|     if not (dm > 0 and dd > 0):
 | |
|         print('dnet log error {0:.1f} {1:.1f} {2:.1f}'.format(dm,dd,xm))
 | |
|         if dd == 0 and dm == 0: dd = 1
 | |
|         if dm == 0: return dd
 | |
|         if dd == 0: return dm
 | |
|     ylog = a*np.log(dm/dd)
 | |
|     if ylog < -10: return dd
 | |
|     if ylog > 10: return dm
 | |
|     a = dd*(1 + np.exp(ylog))**(1/a)
 | |
|     return a
 | |
| 
 | |
| def zeta(zz,zl,re): 
 | |
|     return (zz - zl)*(re + zl)/(re + zz)
 | |
| 
 | |
| def densm(alt, d0, xm, tz, zn3, tn3, tgn3, zn2, tn2, tgn2,gsurf,re):
 | |
|     rgas = 831.4
 | |
|     densm_tmp = d0
 | |
|     tz_tmp = tz
 | |
|     mn3,mn2 = len(zn3),len(zn2)
 | |
| 
 | |
|     if alt > zn2[0]:
 | |
|         if xm == 0: 
 | |
|             densm_tmp = tz
 | |
|             return densm_tmp,tz_tmp       
 | |
|         else:
 | |
|             densm_tmp = d0
 | |
|             return densm_tmp,tz_tmp 
 | |
| 
 | |
|     # stratosphere/mesosphere temperature
 | |
|     if alt > zn2[mn2-1]:
 | |
|         z = alt
 | |
|     else:
 | |
|         z = zn2[mn2-1]
 | |
|     mn = mn2
 | |
|     xs,ys = [np.zeros(mn) for i in range(2)]
 | |
|     z1,z2 = zn2[0],zn2[mn-1]
 | |
|     t1,t2=tn2[0],tn2[mn-1]
 | |
|     zg,zgdif = zeta(z,z1,re),zeta(z2,z1,re)
 | |
|     
 | |
|     # set up spline nodes
 | |
|     for k in range(mn):
 | |
|         xs[k] = zeta(zn2[k],z1,re)/zgdif
 | |
|         ys[k] = 1/tn2[k]
 | |
|     yd1 = -tgn2[0]/t1**2*zgdif
 | |
|     yd2 = -tgn2[1]/t2**2*zgdif*((re + z2)/(re + z1))**2
 | |
| 
 | |
|     # calculate spline coefficients
 | |
|     cs = CubicSpline(xs,ys,bc_type=((1,yd1),(1,yd2))) 
 | |
|     x = zg/zgdif
 | |
|     y = cs(x)
 | |
| 
 | |
|     # temperature at altitude
 | |
|     tz_tmp = 1/y
 | |
|     if xm != 0:
 | |
|         # calaculate stratosphere/mesospehere density
 | |
|         glb = gsurf/(1 + z1/re)**2
 | |
|         gamm = xm*glb*zgdif/rgas
 | |
|     
 | |
|         # Integrate temperature profile
 | |
|         yi = cs.integrate(xs[0],x)
 | |
|         expl = gamm*yi
 | |
|         if expl > 50:
 | |
|             expl = 50
 | |
|         # Density at altitude
 | |
|         densm_tmp = densm_tmp*(t1/tz_tmp)*np.exp(-expl)
 | |
|     if alt > zn3[0]:
 | |
|         if xm == 0:
 | |
|             densm_tmp = tz_tmp
 | |
|             return densm_tmp,tz_tmp      
 | |
|         else:
 | |
|             return densm_tmp,tz_tmp 
 | |
| 
 | |
|     # troposhere/stratosphere temperature
 | |
|     z = alt
 | |
|     mn = mn3
 | |
|     xs,ys = [np.zeros(mn) for i in range(2)]
 | |
|     z1,z2 = zn3[0],zn3[mn-1]
 | |
|     t1,t2 = tn3[0],tn3[mn-1]
 | |
|     zg,zgdif = zeta(z,z1,re),zeta(z2,z1,re)
 | |
| 
 | |
|     # set up spline nodes
 | |
|     for k in range(mn):
 | |
|         xs[k] = zeta(zn3[k],z1,re)/zgdif
 | |
|         ys[k] = 1/tn3[k]
 | |
|     yd1 = -tgn3[0]/t1**2*zgdif
 | |
|     yd2 = -tgn3[1]/t2**2*zgdif*((re+z2)/(re+z1))**2
 | |
| 
 | |
|     # calculate spline coefficients
 | |
|     cs = CubicSpline(xs,ys,bc_type=((1,yd1),(1,yd2))) 
 | |
|     x = zg/zgdif
 | |
|     y = cs(x)
 | |
| 
 | |
|     # temperature at altitude
 | |
|     tz_tmp = 1/y
 | |
|     if xm != 0:
 | |
|         # calaculate tropospheric / stratosphere density
 | |
|         glb = gsurf/(1 + z1/re)**2
 | |
|         gamm = xm*glb*zgdif/rgas
 | |
|     
 | |
|         # Integrate temperature profile
 | |
|         yi = cs.integrate(xs[0],x)
 | |
|         expl = gamm*yi
 | |
|         if expl > 50: expl = 50
 | |
|         # Density at altitude
 | |
|         densm_tmp = densm_tmp*(t1/tz_tmp)*np.exp(-expl)
 | |
| 
 | |
|     if xm == 0:
 | |
|         densm_tmp = tz_tmp
 | |
|         return densm_tmp,tz_tmp
 | |
|     else:
 | |
|         return densm_tmp,tz_tmp
 | |
| 
 | |
| def densu (alt,dlb,tinf,tlb,xm,alpha,tz,zlb,s2,zn1,tn1,tgn1,gsurf,re):
 | |
|     '''
 | |
|     Calculate Temperature and Density Profiles for MSIS models
 | |
|     '''
 | |
|     rgas = 831.4
 | |
|     densu_tmp = 1
 | |
|     mn1 = len(zn1)
 | |
|     # joining altitudes of Bates and spline
 | |
|     za = zn1[0]
 | |
|     if alt > za:
 | |
|         z = alt
 | |
|     else:
 | |
|         z = za
 | |
|     # geopotential altitude difference from ZLB
 | |
|     zg2 = zeta(z,zlb,re)
 | |
| 
 | |
|     # Bates temperature
 | |
|     tt = tinf - (tinf - tlb)*np.exp(-s2*zg2)
 | |
|     ta = tz = tt
 | |
|     densu_tmp = tz_tmp = tz
 | |
| 
 | |
|     if alt < za:
 | |
|         # calculate temperature below ZA
 | |
|         # temperature gradient at ZA from Bates profile
 | |
|         dta = (tinf - ta)*s2*((re + zlb)/(re + za))**2
 | |
|         tgn1[0],tn1[0] = dta,ta
 | |
|         if alt > zn1[mn1-1]:
 | |
|             z = alt
 | |
|         else:
 | |
|             z = zn1[mn1-1]
 | |
|         mn = mn1
 | |
|         xs,ys = [np.zeros(mn) for i in range(2)]
 | |
|         z1,z2 = zn1[0],zn1[mn-1]
 | |
|         t1,t2 = tn1[0],tn1[mn-1]
 | |
|         # geopotental difference from z1
 | |
|         zg,zgdif = zeta(z,z1,re),zeta(z2,z1,re)
 | |
|         # set up spline nodes
 | |
|         for k in range(mn):
 | |
|             xs[k] = zeta(zn1[k],z1,re)/zgdif
 | |
|             ys[k] = 1/tn1[k]
 | |
|         # end node derivatives
 | |
|         yd1 = -tgn1[0]/t1**2*zgdif
 | |
|         yd2 = -tgn1[1]/t2**2*zgdif*((re + z2)/(re + z1))**2
 | |
|         # calculate spline coefficients
 | |
|         cs = CubicSpline(xs,ys,bc_type=((1,yd1),(1,yd2))) 
 | |
|         x = zg/zgdif
 | |
|         y = cs(x)
 | |
|         # temperature at altitude
 | |
|         tz_tmp = 1/y
 | |
|         densu_tmp = tz_tmp
 | |
|     if xm == 0: return densu_tmp,tz_tmp
 | |
|     
 | |
|     # calculate density above za
 | |
|     glb = gsurf/(1 + zlb/re)**2
 | |
|     gamma = xm*glb/(s2*rgas*tinf)
 | |
|     expl = np.exp(-s2*gamma*zg2)
 | |
|     if expl > 50: expl = 50
 | |
|     if tt <= 0: expl = 50   
 | |
| 
 | |
|     # density at altitude
 | |
|     densa = dlb*(tlb/tt)**(1 + alpha + gamma)*expl
 | |
|     densu_tmp = densa
 | |
|     if alt >= za: return densu_tmp,tz_tmp
 | |
|     
 | |
|     # calculate density below za
 | |
|     glb = gsurf/(1 + z1/re)**2
 | |
|     gamm = xm*glb*zgdif/rgas
 | |
| 
 | |
|     # integrate spline temperatures
 | |
|     yi = cs.integrate(xs[0],x)
 | |
|     expl = gamm*yi
 | |
|     if expl > 50: expl = 50
 | |
|     if tz_tmp <= 0: expl = 50
 | |
| 
 | |
|     # density at altitude
 | |
|     densu_tmp = densu_tmp*(t1/tz_tmp)**(1 + alpha)*np.exp(-expl)
 | |
|     return densu_tmp,tz_tmp
 | |
| 
 | |
| # =============== 3hr magnetic activity functions =================== #
 | |
| 
 | |
| # Eq. A24d
 | |
| def g0(a,p):
 | |
|     return (a - 4 + (p[25] - 1)*(a - 4 + (np.exp(-np.abs(p[24])*(a - 4)) - 1) / np.abs(p[24])))
 | |
| 
 | |
| # Eq. A24c
 | |
| def sumex(ex):
 | |
|     return (1 + (1 - ex**19)/(1 - ex)*ex**0.5)
 | |
| 
 | |
| # Eq. A24a
 | |
| def sg0(ex,p,ap):
 | |
|     # call sumex, g0
 | |
|     return (g0(ap[1],p) + g0(ap[2],p)*ex + g0(ap[3],p)*ex**2 + \
 | |
|                 g0(ap[4],p)*ex**3 + (g0(ap[5],p)*ex**4 + \
 | |
|                 g0(ap[6],p)*ex**12)*(1-ex**8)/(1-ex))/sumex(ex)
 | |
| 
 | |
| # =============== 3hr magnetic activity functions =================== #
 | |
| 
 | |
| def lengendre(g_lat,lmax = 8):
 | |
|     # Index of PLegendreA_x can be calculated by PlmIndex(l,m)
 | |
|     x = np.sin(np.deg2rad(g_lat))
 | |
|     PLegendreA_x = PLegendreA(lmax,x)
 | |
|     return PLegendreA_x
 | |
| 
 | |
| def globe7(p,inputp,flags):
 | |
|     '''
 | |
|     Calculate G(L) function 
 | |
|     '''
 | |
|     t = np.zeros(15)
 | |
|     sr = 7.2722E-5
 | |
|     dr = 1.72142E-2
 | |
|     hr = 0.2618
 | |
|     
 | |
|     apdf = 0
 | |
|     apt = np.zeros(4)
 | |
|     tloc = inputp['lst']
 | |
| 
 | |
|     if not (flags['sw'][6]==0 and flags['sw'][7]==0 and flags['sw'][13]==0):
 | |
|         stloc,ctloc = np.sin(hr*tloc),np.cos(hr*tloc)
 | |
|         s2tloc,c2tloc = np.sin(2*hr*tloc),np.cos(2*hr*tloc)
 | |
|         s3tloc,c3tloc = np.sin(3*hr*tloc),np.cos(3*hr*tloc)
 | |
|     cd32 = np.cos(dr*(inputp['doy'] - p[31]))
 | |
|     cd18 = np.cos(2*dr*(inputp['doy'] - p[17]))
 | |
|     cd14 = np.cos(dr*(inputp['doy'] - p[13]))
 | |
|     cd39 = np.cos(2*dr*(inputp['doy'] - p[38]))
 | |
| 
 | |
|     # F10.7 effect 
 | |
|     df = inputp['f107'] - inputp['f107A']
 | |
|     dfa = inputp['f107A'] - 150
 | |
|     t[0] =  p[19]*df*(1 + p[59]*dfa) + p[20]*df**2 + p[21]*dfa + p[29]*dfa**2
 | |
|     f1 = 1 + (p[47]*dfa + p[19]*df + p[20]*df**2)*flags['swc'][0]
 | |
|     f2 = 1 + (p[49]*dfa + p[19]*df + p[20]*df**2)*flags['swc'][0]
 | |
|     
 | |
|     plg = lengendre(inputp['g_lat'])
 | |
| 
 | |
|     #  time independent 
 | |
|     t[1] = p[1]*plg[3] + p[2]*plg[10] + p[22]*plg[21] + p[14]*plg[3]*dfa*flags['swc'][0] + p[26]*plg[1]
 | |
|     
 | |
|     # symmetrical annual
 | |
|     t[2] = p[18]*cd32
 | |
| 
 | |
|     # symmetrical semiannual
 | |
|     t[3] = (p[15] + p[16]*plg[3])*cd18
 | |
| 
 | |
|     # asymmetrical annual
 | |
|     t[4] = f1*(p[9]*plg[1] + p[10]*plg[6])*cd14
 | |
| 
 | |
|     # asymmetrical semiannual 
 | |
|     t[5] = p[37]*plg[1]*cd39
 | |
|     
 | |
|     # diurnal 
 | |
|     if flags['sw'][6]:
 | |
|         t71 = p[11]*plg[4]*cd14*flags['swc'][4]
 | |
|         t72 = p[12]*plg[4]*cd14*flags['swc'][4]
 | |
|         t[6] = f2*((p[3]*plg[2] + p[4]*plg[7] + p[27]*plg[16] + t71) * ctloc + (p[6]*plg[2] + p[7]*plg[7] + p[28]*plg[16] + t72)*stloc)
 | |
|     
 | |
|     # semiannual 
 | |
|     if flags['sw'][7]:
 | |
|         t81 = (p[23]*plg[8] + p[35]*plg[17])*cd14*flags['swc'][4]
 | |
|         t82 = (p[33]*plg[8] + p[36]*plg[17])*cd14*flags['swc'][4]
 | |
|         t[7] = f2*((p[5]*plg[5] + p[41]*plg[12] + t81)*c2tloc +(p[8]*plg[5] + p[42]*plg[12] + t82)*s2tloc)
 | |
| 
 | |
|     # terdiurnal
 | |
|     if flags['sw'][13]:
 | |
|         t[13] = f2*((p[39]*plg[9] + (p[93]*plg[13] + p[46]*plg[24])*cd14*flags['swc'][4])*s3tloc + (p[40]*plg[9]+(p[94]*plg[13] + p[48]*plg[24])*cd14*flags['swc'][4])*c3tloc)
 | |
|     
 | |
|     # magnetic activity based on daily ap 
 | |
|     if flags['sw'][8] == -1:
 | |
|         ap = inputp['ap_a']
 | |
|         if p[51]!= 0:
 | |
|             exp1 = np.exp(-10800*np.abs(p[51])/(1 + p[138]*(45 - np.abs(inputp['g_lat']))))
 | |
|             if exp1 > 0.99999: exp1 = 0.99999
 | |
|             if p[24] < 1E-4: p[24] = 1E-4
 | |
|             apt[0] = sg0(exp1,p,ap)
 | |
|             # apt[1] = sg2(exp1,p,ap)
 | |
|             # apt[2] = sg0(exp2,p,ap)
 | |
|             # apt[3] = sg2(exp2,p,ap)
 | |
| 
 | |
|             if flags['sw'][8]:
 | |
|                 t[8] = apt[0]*(p[50] + p[96]*plg[3] + p[54]*plg[10] + \
 | |
|                        (p[125]*plg[1] + p[126]*plg[6] + p[127]*plg[15])*cd14*flags['swc'][4] + \
 | |
|                        (p[128]*plg[2] + p[129]*plg[7] + p[130]*plg[16])*flags['swc'][6]*np.cos(hr*(tloc - p[131])))
 | |
|     else:
 | |
|         apd = inputp['ap'] - 4
 | |
|         p44 = p[43]
 | |
|         p45 = p[44]
 | |
|         if p44 < 0: p44 = 1E-5
 | |
|         apdf = apd + (p45 - 1)*(apd + (np.exp(-p44*apd) - 1)/p44)
 | |
|         if flags['sw'][8]:
 | |
|             t[8]=apdf*(p[32] + p[45]*plg[3] + p[34]*plg[10] + \
 | |
|      (p[100]*plg[1] + p[101]*plg[6] + p[102]*plg[15])*cd14*flags['swc'][4] +
 | |
|      (p[121]*plg[2] + p[122]*plg[7] + p[123]*plg[16])*flags['swc'][6]*np.cos(hr*(tloc - p[124])))
 | |
| 
 | |
|     if flags['sw'][9] and inputp['g_lon'] > -1000:
 | |
|         # longitudinal
 | |
|         if flags['sw'][10]:
 | |
|             t[10] = (1 + p[80]*dfa*flags['swc'][0])*((p[64]*plg[4] + p[65]*plg[11] + p[66]*plg[22]\
 | |
|                     + p[103]*plg[2] + p[104]*plg[7] + p[105]*plg[16]\
 | |
|                     + flags['swc'][4]*(p[109]*plg[2] + p[110]*plg[7] + p[111]*plg[16])*cd14)*np.cos(np.deg2rad(inputp['g_lon'])) \
 | |
|                     +(p[90]*plg[4]+p[91]*plg[11]+p[92]*plg[22] + p[106]*plg[2]+p[107]*plg[7]+p[108]*plg[16]\
 | |
|                     + flags['swc'][4]*(p[112]*plg[2] + p[113]*plg[7] + p[114]*plg[16])*cd14)*np.sin(np.deg2rad(inputp['g_lon'])))
 | |
| 
 | |
|         # ut and mixed ut, longitude 
 | |
|         if flags['sw'][11]:
 | |
|             t[11]=(1 + p[95]*plg[1])*(1 + p[81]*dfa*flags['swc'][0])*\
 | |
|             (1 + p[119]*plg[1]*flags['swc'][4]*cd14)*\
 | |
|             ((p[68]*plg[1] + p[69]*plg[6] + p[70]*plg[15])*np.cos(sr*(inputp['sec'] - p[71])))
 | |
|             t[11] += flags['swc'][10]*(p[76]*plg[8] + p[77]*plg[17] + p[78]*plg[30])*\
 | |
|             np.cos(sr*(inputp['sec'] - p[79]) + 2*np.deg2rad(inputp['g_lon']))*(1 + p[137]*dfa*flags['swc'][0])
 | |
|             
 | |
|         # ut, longitude magnetic activity 
 | |
|         if flags['sw'][10]:
 | |
|             if flags['sw'][8] == -1:
 | |
|                 if p[51]:
 | |
|                     t[12] = apt[0]*flags['swc'][10]*(1 + p[132]*plg[1])*\
 | |
|                     ((p[52]*plg[4] + p[98]*plg[11] + p[67]*plg[22])* np.cos(np.deg2rad(inputp['g_lon'] - p[97])))\
 | |
|                     + apt[0]*flags['swc'][10]*flags['swc'][4]*(p[133]*plg[2] + p[134]*plg[7] + p[135]*plg[16])*\
 | |
|                     cd14*np.cos(np.deg2rad(inputp['g_lon'] - p[136])) + apt[0]*flags['swc'][11]* \
 | |
|                     (p[55]*plg[1] + p[56]*plg[6] + p[57]*plg[15])*np.cos(sr*(inputp['sec'] - p[58]))
 | |
|             else:
 | |
|                 t[12] = apdf*flags['swc'][10]*(1 + p[120]*plg[1])*((p[60]*plg[4] + p[61]*plg[11] + p[62]*plg[22])*\
 | |
|                     np.cos(np.deg2rad(inputp['g_lon']-p[63])))+apdf*flags['swc'][10]*flags['swc'][4]* \
 | |
|                     (p[115]*plg[2] + p[116]*plg[7] + p[117]*plg[16])* \
 | |
|                     cd14*np.cos(np.deg2rad(inputp['g_lon'] - p[118])) \
 | |
|                     + apdf*flags['swc'][11]*(p[83]*plg[1] + p[84]*plg[6] + p[85]*plg[15])* np.cos(sr*(inputp['sec'] - p[75]))
 | |
| 
 | |
|     # parms not used: 82, 89, 99, 139-149 
 | |
|     tinf = p[30]
 | |
|     for i in range(14):
 | |
|         tinf = tinf + np.abs(flags['sw'][i])*t[i]    
 | |
|     return tinf,[dfa,plg,ctloc,stloc,c2tloc,s2tloc,s3tloc,c3tloc,apdf,apt]   
 | |
| 
 | |
| def glob7s(p,inputp,flags,varli):
 | |
|     pset = 2
 | |
|     t = np.zeros(14)
 | |
|     dr = 1.72142E-2
 | |
|     [dfa,plg,ctloc,stloc,c2tloc,s2tloc,s3tloc,c3tloc,apdf,apt] = varli
 | |
|     
 | |
|     # confirm parameter set
 | |
|     if p[99] == 0: p[99] = pset
 | |
|     if p[99] != pset:
 | |
|         print("Wrong parameter set for glob7s")
 | |
|         return -1
 | |
| 
 | |
|     for j in range(14):
 | |
|         t[j] = 0
 | |
|         cd32 = np.cos(dr*(inputp['doy'] - p[31]))
 | |
|         cd18 = np.cos(2*dr*(inputp['doy'] - p[17]))
 | |
|         cd14 = np.cos(dr*(inputp['doy'] - p[13]))
 | |
|         cd39 = np.cos(2*dr*(inputp['doy'] - p[38]))
 | |
| 
 | |
|     # F10.7 
 | |
|     t[0] = p[21]*dfa
 | |
| 
 | |
|     # time independent 
 | |
|     t[1] = p[1]*plg[3] + p[2]*plg[10] + p[22]*plg[21] + p[26]*plg[1] + p[14]*plg[6] + p[59]*plg[15]
 | |
| 
 | |
|     # symmetrical annual
 | |
|     t[2] = (p[18] + p[47]*plg[3] + p[29]*plg[10])*cd32
 | |
| 
 | |
|     # symmetrical semiannual
 | |
|     t[3] = (p[15] + p[16]*plg[3] + p[30]*plg[10])*cd18
 | |
| 
 | |
|     # asymmetrical annual
 | |
|     t[4] = (p[9]*plg[1] + p[10]*plg[6] + p[20]*plg[15])*cd14
 | |
| 
 | |
|     # asymmetrical semiannual
 | |
|     t[5] = p[37]*plg[1]*cd39;
 | |
| 
 | |
|     # diurnal
 | |
|     if flags['sw'][6]:
 | |
|         t71 = p[11]*plg[4]*cd14*flags['swc'][4]
 | |
|         t72 = p[12]*plg[4]*cd14*flags['swc'][4]
 | |
|         t[6] = ((p[3]*plg[2] + p[4]*plg[7] + t71)*ctloc + (p[6]*plg[2] + p[7]*plg[7] + t72)*stloc) 
 | |
| 
 | |
|     # semidiurnal
 | |
|     if flags['sw'][7]:
 | |
|         t81 = (p[23]*plg[8] + p[35]*plg[17])*cd14*flags['swc'][4]
 | |
|         t82 = (p[33]*plg[8] + p[36]*plg[17])*cd14*flags['swc'][4]
 | |
|         t[7] = ((p[5]*plg[5] + p[41]*plg[12] + t81)*c2tloc + (p[8]*plg[5] + p[42]*plg[12] + t82)*s2tloc)
 | |
| 
 | |
|     # terdiurnal
 | |
|     if flags['sw'][13]:
 | |
|         t[13] = p[39]*plg[9]*s3tloc + p[40]*plg[9]*c3tloc
 | |
| 
 | |
|     # magnetic activity
 | |
|     if flags['sw'][8]:
 | |
|         if flags['sw'][8]==1:
 | |
|             t[8] = apdf * (p[32] + p[45]*plg[3]*flags['swc'][1])
 | |
|         if flags['sw'][8]==-1:
 | |
|             t[8]=(p[50]*apt[0] + p[96]*plg[3]*apt[0]*flags['swc'][1])
 | |
| 
 | |
|     # longitudinal
 | |
|     if not (flags['sw'][9]==0 or flags['sw'][10]==0 or inputp['g_lon']<=-1000):
 | |
|         t[10] = (1 + plg[1]*(p[80]*flags['swc'][4]*np.cos(dr*(inputp['doy'] - p[81]))\
 | |
|             + p[85]*flags['swc'][5]*np.cos(2*dr*(inputp['doy'] - p[86])))\
 | |
|             + p[83]*flags['swc'][2]*np.cos(dr*(inputp['doy'] - p[84]))\
 | |
|             + p[87]*flags['swc'][3]*np.cos(2*dr*(inputp['doy'] - p[88])))\
 | |
|             *((p[64]*plg[4] + p[65]*plg[11] + p[66]*plg[22]\
 | |
|             + p[74]*plg[2] + p[75]*plg[7] + p[76]*plg[16])*np.cos(np.deg2rad(inputp['g_lon']))\
 | |
|             + (p[90]*plg[4] + p[91]*plg[11] + p[92]*plg[22]\
 | |
|             + p[77]*plg[2] + p[78]*plg[7] + p[79]*plg[16])*np.sin(np.deg2rad(inputp['g_lon'])))
 | |
|     
 | |
|     tt = 0
 | |
|     for i in range(14):
 | |
|         tt += np.abs(flags['sw'][i])*t[i]
 | |
|     return tt
 | |
|               
 | |
| def gtd7(inputp,switches):
 | |
|     tz = 0
 | |
|     zn3 = np.array([32.5,20.0,15.0,10.0,0.0])
 | |
|     zn2 = np.array([72.5,55.0,45.0,32.5])
 | |
|     zmix= 62.5
 | |
|     
 | |
|     output = {'d':{'He':0,'O':0,'N2':0,'O2':0,'AR':0,'RHO':0,'H':0,'N':0,'ANM O':0},\
 | |
|               't':{'TINF':0,'TG':0}}
 | |
|     
 | |
|     flags = tselec(switches)
 | |
|     
 | |
|     # Latitude variation of gravity (none for sw[1]=0) 
 | |
|     xlat = inputp['g_lat']
 | |
|     if flags['sw'][1]==0: xlat = 45
 | |
|     gsurf,re = glatf(xlat)
 | |
|     pt,pd,ps,pdl,ptm,pdm,ptl,pma,sam,pavgm = nrlmsis00_data()
 | |
|     xmm = pdm[2,4]
 | |
|     
 | |
|     # thermosphere/mesosphere (above zn2[0])
 | |
|     if inputp['alt'] > zn2[0]:
 | |
|         altt = inputp['alt']
 | |
|     else:
 | |
|         altt = zn2[0]
 | |
| 
 | |
|     tmp = inputp['alt']
 | |
|     inputp['alt'] = altt
 | |
|     soutput,dm28,[meso_tn1,meso_tn2,meso_tn3,meso_tgn1,meso_tgn2,meso_tgn3],[dfa,plg,ctloc,stloc,c2tloc,s2tloc,s3tloc,c3tloc,apdf,apt] = gts7(inputp,flags,gsurf,re)
 | |
|     altt = inputp['alt']
 | |
|     inputp['alt'] = tmp
 | |
|     # metric adjustment 
 | |
|     dm28m = dm28*1E6
 | |
|     output['t']['TINF'] = soutput['t']['TINF']
 | |
|     output['t']['TG'] = soutput['t']['TG']
 | |
|     if inputp['alt'] >= zn2[0]:
 | |
|         output['d'] = soutput['d']
 | |
|         return output
 | |
| 
 | |
|     varli = [dfa,plg,ctloc,stloc,c2tloc,s2tloc,s3tloc,c3tloc,apdf,apt]
 | |
| 
 | |
|     meso_tgn2[0] = meso_tgn1[1]
 | |
|     meso_tn2[0] = meso_tn1[4]
 | |
|     meso_tn2[1] = pma[0,0]*pavgm[0]/(1-flags['sw'][19]*glob7s(pma[0], inputp, flags,varli))
 | |
|     meso_tn2[2] = pma[1,0]*pavgm[1]/(1-flags['sw'][19]*glob7s(pma[1], inputp, flags,varli))
 | |
|     meso_tn2[3] = pma[2,0]*pavgm[2]/(1-flags['sw'][19]*flags['sw'][21]*glob7s(pma[2], inputp, flags,varli))
 | |
|     meso_tgn2[1] = pavgm[8]*pma[9,0]*(1+flags['sw'][19]*flags['sw'][21]*glob7s(pma[9], inputp, flags,varli))*meso_tn2[3]*meso_tn2[3]/(pma[2,0]*pavgm[2])**2
 | |
|     meso_tn3[0] = meso_tn2[3]
 | |
|     
 | |
|     if inputp['alt'] <= zn3[0]:
 | |
| 
 | |
|         meso_tgn3[0] = meso_tgn2[1]
 | |
|         meso_tn3[1] = pma[3,0]*pavgm[3]/(1-flags['sw'][21]*glob7s(pma[3], inputp, flags,varli))
 | |
|         meso_tn3[2] = pma[4,0]*pavgm[4]/(1-flags['sw'][21]*glob7s(pma[4], inputp, flags,varli))
 | |
|         meso_tn3[3] = pma[5,0]*pavgm[5]/(1-flags['sw'][21]*glob7s(pma[5], inputp, flags,varli))
 | |
|         meso_tn3[4] = pma[6,0]*pavgm[6]/(1-flags['sw'][21]*glob7s(pma[6], inputp, flags,varli))
 | |
|         meso_tgn3[1] = pma[7,0]*pavgm[7]*(1+flags['sw'][21]*glob7s(pma[7], inputp, flags,varli)) *meso_tn3[4]*meso_tn3[4]/(pma[6,0]*pavgm[6])**2
 | |
| 
 | |
|     # linear transition to full mixing below znz[0]
 | |
| 
 | |
|     dmc = 0
 | |
|     if inputp['alt'] > zmix:
 | |
|         dmc = 1 - (zn2[0]-inputp['alt'])/(zn2[0] - zmix)
 | |
|     dz28 = soutput['d']['N2']
 | |
|     
 | |
|     # N2 density
 | |
|     dmr = soutput['d']['N2'] / dm28m - 1
 | |
|     output['d']['N2'],tz = densm(inputp['alt'],dm28m,xmm, tz, zn3, meso_tn3, meso_tgn3, zn2, meso_tn2, meso_tgn2,gsurf,re)
 | |
|     output['d']['N2'] = output['d']['N2'] * (1 + dmr*dmc)
 | |
| 
 | |
|     # HE density 
 | |
|     dmr = soutput['d']['He'] / (dz28 * pdm[0,1]) - 1
 | |
|     output['d']['He'] = output['d']['N2'] * pdm[0,1] * (1 + dmr*dmc)
 | |
| 
 | |
|     # O density
 | |
|     output['d']['O'] = 0
 | |
|     output['d']['ANM O'] = 0
 | |
| 
 | |
|     # O2 density
 | |
|     dmr = soutput['d']['O2'] / (dz28 * pdm[3,1]) - 1
 | |
|     output['d']['O2'] = output['d']['N2'] * pdm[3,1] * (1 + dmr*dmc)
 | |
| 
 | |
|     # AR density 
 | |
|     dmr = soutput['d']['AR'] / (dz28 * pdm[4,1]) - 1
 | |
|     output['d']['AR'] = output['d']['N2'] * pdm[4,1] * (1 + dmr*dmc)
 | |
| 
 | |
|     # Hydrogen density
 | |
|     output['d']['H'] = 0
 | |
| 
 | |
|     # Atomic nitrogen density 
 | |
|     output['d']['N'] = 0
 | |
| 
 | |
|     # Total mass density 
 | |
|     output['d']['RHO'] = 1.66E-24 * (4 * output['d']['He'] + 16 * output['d']['O'] + 28 * output['d']['N2']\
 | |
|                                      + 32 * output['d']['O2'] + 40 * output['d']['AR'] + output['d']['H'] + 14 * output['d']['N'])
 | |
| 
 | |
|     output['d']['RHO'] = output['d']['RHO']/1000
 | |
| 
 | |
|     # temperature at altitude 
 | |
|     dd,tz = densm(inputp['alt'], 1, 0, tz, zn3, meso_tn3, meso_tgn3, zn2, meso_tn2, meso_tgn2,gsurf,re)
 | |
|     output['t']['TG'] = tz
 | |
|     return output
 | |
| 
 | |
| 
 | |
| def gtd7d(inputp, flags):
 | |
|     output = gtd7(inputp, flags)
 | |
|     output['d']['RHO'] = 1.66E-24 * (4 * output['d']['He'] + 16 * output['d']['O'] + 28 * output['d']['N2']\
 | |
|                                      + 32 * output['d']['O2'] + 40 * output['d']['AR'] + output['d']['H'] + 14 * output['d']['N'] + 16 * output['d']['ANM O'])
 | |
| 
 | |
|     output['d']['RHO'] = output['d']['RHO']/1e3
 | |
|     return output
 | |
|               
 | |
| def gts7(inputp,flags,gsurf,re):
 | |
|     
 | |
|     output = {'d':{'He':0,'O':0,'N2':0,'O2':0,'AR':0,'RHO':0,'H':0,'N':0,'ANM O':0},\
 | |
|               't':{'TINF':0,'TG':0}}
 | |
|     tz = 0
 | |
|     dm28 = 0
 | |
|     meso_tn1,meso_tn3 = [np.zeros(5) for i in range(2)]
 | |
|     meso_tn2 = np.zeros(4)
 | |
|     meso_tgn1,meso_tgn2,meso_tgn3 = [np.zeros(2) for i in range(3)]
 | |
|     
 | |
|     zn1 = np.array([120.0, 110.0, 100.0, 90.0, 72.5])
 | |
| 
 | |
|     dr = 1.72142E-2
 | |
|     alpha = np.array([-0.38, 0.0, 0.0, 0.0, 0.17, 0.0, -0.38, 0.0, 0.0])
 | |
|     altl = np.array([200.0, 300.0, 160.0, 250.0, 240.0, 450.0, 320.0, 450.0])
 | |
|     pt,pd,ps,pdl,ptm,pdm,ptl,pma,sam,pavgm = nrlmsis00_data()
 | |
|     za = pdl[1,15]
 | |
|     zn1[0] = za
 | |
|     
 | |
|     # tinf variations not important below za or zn1[0]
 | |
|     if inputp['alt'] > zn1[0]:
 | |
|         tinf_tmp,varli = globe7(pt,inputp,flags)
 | |
|         tinf = ptm[0]*pt[0] * (1+flags['sw'][15]*tinf_tmp)
 | |
|     else:
 | |
|         tinf = ptm[0]*pt[0]
 | |
|     output['t']['TINF'] = tinf
 | |
|     
 | |
|     # gradient variations not important below zn1[4]
 | |
|     if inputp['alt'] > zn1[4]:
 | |
|         tinf_tmp,varli = globe7(ps,inputp,flags)
 | |
|         grad = ptm[3]*ps[0] * (1+flags['sw'][18]*tinf_tmp)
 | |
|     else:
 | |
|         grad = ptm[3]*ps[0]
 | |
|     tinf_tmp,varli = globe7(pd[3],inputp,flags)    
 | |
|     tlb = ptm[1] * (1 + flags['sw'][16]*tinf_tmp)*pd[3,0]
 | |
|     s = grad/(tinf - tlb)
 | |
|     
 | |
|     # Lower thermosphere temp variations not significant for density above 300 km
 | |
|     if inputp['alt'] < 300:
 | |
|         meso_tn1[1] = ptm[6]*ptl[0,0]/(1.0-flags['sw'][17]*glob7s(ptl[0], inputp, flags,varli))
 | |
|         meso_tn1[2] = ptm[2]*ptl[1,0]/(1.0-flags['sw'][17]*glob7s(ptl[1], inputp, flags,varli))
 | |
|         meso_tn1[3] = ptm[7]*ptl[2,0]/(1.0-flags['sw'][17]*glob7s(ptl[2], inputp, flags,varli))
 | |
|         meso_tn1[4] = ptm[4]*ptl[3,0]/(1.0-flags['sw'][17]*flags['sw'][19]*glob7s(ptl[3], inputp, flags,varli))
 | |
|         meso_tgn1[1] = ptm[8]*pma[8,0]*(1.0+flags['sw'][17]*flags['sw'][19]*glob7s(pma[8], inputp, flags,varli))*meso_tn1[4]*meso_tn1[4]/(ptm[4]*ptl[3,0])**2
 | |
|     else:
 | |
|         meso_tn1[1]=ptm[6]*ptl[0,0]
 | |
|         meso_tn1[2]=ptm[2]*ptl[1,0]
 | |
|         meso_tn1[3]=ptm[7]*ptl[2,0]
 | |
|         meso_tn1[4]=ptm[4]*ptl[3,0]
 | |
|         meso_tgn1[1]=ptm[8]*pma[8,0]*meso_tn1[4]*meso_tn1[4]/(ptm[4]*ptl[3,0])**2
 | |
|         
 | |
|     # N2 variation factor at Zlb
 | |
|     tinf_tmp,varli = globe7(pd[2],inputp,flags)
 | |
|     g28 = flags['sw'][20]*tinf_tmp
 | |
| 
 | |
|     # variation of turbopause height
 | |
|     zhf = pdl[1,24]*(1+flags['sw'][4]*pdl[0,24]*np.sin(np.deg2rad(inputp['g_lat']))*np.cos(dr*(inputp['doy']-pt[13])))
 | |
|     output['t']['TINF'] = tinf
 | |
|     xmm = pdm[2,4]
 | |
|     z = inputp['alt']
 | |
| 
 | |
|     # N2 density
 | |
|     # Diffusive density at Zlb 
 | |
|     db28 = pdm[2,0]*np.exp(g28)*pd[2,0]
 | |
|     # Diffusive density at Alt 
 | |
|     output['d']['N2'],output['t']['TG'] = densu(z,db28,tinf,tlb,28,alpha[2],output['t']['TG'],ptm[5],s,zn1,meso_tn1,meso_tgn1,gsurf,re)
 | |
|     dd = output['d']['N2']
 | |
|     # Turbopause 
 | |
|     zh28 = pdm[2,2]*zhf
 | |
|     zhm28 = pdm[2,3]*pdl[1,5] 
 | |
|     xmd = 28 - xmm
 | |
|     # Mixed density at Zlb 
 | |
|     b28,tz = densu(zh28,db28,tinf,tlb,xmd,(alpha[2]-1),tz,ptm[5],s, zn1,meso_tn1,meso_tgn1,gsurf,re)
 | |
|     if flags['sw'][14] and z <= altl[2]:
 | |
|         # Mixed density at Alt 
 | |
|         dm28,tz = densu(z,b28,tinf,tlb,xmm,alpha[2],tz,ptm[5],s,zn1,meso_tn1,meso_tgn1,gsurf,re)
 | |
|         # Net density at Alt
 | |
|         output['d']['N2'] = dnet(output['d']['N2'],dm28,zhm28,xmm,28)
 | |
|     
 | |
|     # HE density
 | |
|     # Density variation factor at Zlb
 | |
|     tinf_tmp,varli = globe7(pd[0],inputp,flags)
 | |
|     g4 = flags['sw'][20]*tinf_tmp
 | |
|     # Diffusive density at Zlb 
 | |
|     db04 = pdm[0,0]*np.exp(g4)*pd[0,0]
 | |
|     # Diffusive density at Alt 
 | |
|     output['d']['He'],output['t']['TG'] = densu(z,db04,tinf,tlb, 4,alpha[0],output['t']['TG'],ptm[5],s,zn1,meso_tn1,meso_tgn1,gsurf,re)
 | |
|     dd = output['d']['He']
 | |
|     if flags['sw'][14] and z<altl[0]:
 | |
|         # Turbopause 
 | |
|         zh04 = pdm[0,2]
 | |
|         # Mixed density at Zlb
 | |
|         b04,output['t']['TG'] = densu(zh04,db04,tinf,tlb,4-xmm,alpha[0]-1,output['t']['TG'],ptm[5],s,zn1,meso_tn1,meso_tgn1,gsurf,re)
 | |
|         # Mixed density at Alt
 | |
|         dm04,output['t']['TG'] = densu(z,b04,tinf,tlb,xmm,0,output['t']['TG'],ptm[5],s,zn1,meso_tn1,meso_tgn1,gsurf,re)
 | |
|         zhm04 = zhm28
 | |
|         # Net density at Alt
 | |
|         output['d']['He'] = dnet(output['d']['He'],dm04,zhm04,xmm,4)
 | |
|         # Correction to specified mixing ratio at ground 
 | |
|         rl = np.log(b28*pdm[0,1]/b04)
 | |
|         zc04 = pdm[0,4]*pdl[1,0]
 | |
|         hc04 = pdm[0,5]*pdl[1,1]
 | |
|         # Net density corrected at Alt 
 | |
|         output['d']['He'] = output['d']['He']*ccor(z,rl,hc04,zc04) 
 | |
|         
 | |
|     # O density
 | |
|     # Density variation factor at Zlb 
 | |
|     tinf_tmp,varli = globe7(pd[1],inputp,flags)
 | |
|     g16 = flags['sw'][20]*tinf_tmp
 | |
|     # Diffusive density at Zlb 
 | |
|     db16 =  pdm[1,0]*np.exp(g16)*pd[1,0]
 | |
|     # Diffusive density at Alt 
 | |
|     output['d']['O'],output['t']['TG'] = densu(z,db16,tinf,tlb,16,alpha[1],output['t']['TG'],ptm[5],s, zn1,meso_tn1,meso_tgn1,gsurf,re)
 | |
|     dd = output['d']['O']
 | |
|     if flags['sw'][14] and z <= altl[1]:
 | |
|         #   Turbopause 
 | |
|         zh16 = pdm[1,2]
 | |
|         #  Mixed density at Zlb 
 | |
|         b16,output['t']['TG'] = densu(zh16,db16,tinf,tlb,16-xmm,alpha[1]-1, output['t']['TG'],ptm[5],s,zn1,meso_tn1,meso_tgn1,gsurf,re)
 | |
|         #  Mixed density at Alt 
 | |
|         dm16,output['t']['TG'] = densu(z,b16,tinf,tlb,xmm,0,output['t']['TG'],ptm[5],s,zn1,meso_tn1,meso_tgn1,gsurf,re)
 | |
|         zhm16 = zhm28
 | |
|         # Net density at Alt 
 | |
|         output['d']['O'] = dnet(output['d']['O'],dm16,zhm16,xmm,16)
 | |
|         rl = pdm[1,1]*pdl[1,16]*(1+flags['sw'][0]*pdl[0,23]*(inputp['f107A']-150))
 | |
|         hc16 = pdm[1,5]*pdl[1,3]
 | |
|         zc16 = pdm[1,4]*pdl[1,2]
 | |
|         hc216 = pdm[1,5]*pdl[1,4]
 | |
|         output['d']['O'] = output['d']['O']*ccor2(z,rl,hc16,zc16,hc216)
 | |
|         # Chemistry correction 
 | |
|         hcc16 = pdm[1,7]*pdl[1,13]
 | |
|         zcc16 = pdm[1,6]*pdl[1,12]
 | |
|         rc16 = pdm[1,3]*pdl[1,14]
 | |
|         # Net density corrected at Alt
 | |
|         output['d']['O'] = output['d']['O']*ccor(z,rc16,hcc16,zcc16)
 | |
|     
 | |
|     # O2 density
 | |
|     # Density variation factor at Zlb 
 | |
|     tinf_tmp,varli = globe7(pd[4],inputp,flags)
 | |
|     g32 = flags['sw'][20]*tinf_tmp
 | |
|     # Diffusive density at Zlb 
 | |
|     db32 = pdm[3,0]*np.exp(g32)*pd[4,0]
 | |
|     # Diffusive density at Alt 
 | |
|     output['d']['O2'],output['t']['TG'] = densu(z,db32,tinf,tlb, 32,alpha[3],output['t']['TG'],ptm[5],s, zn1,meso_tn1,meso_tgn1,gsurf,re)
 | |
|     dd = output['d']['O2'];
 | |
|     if flags['sw'][14]:
 | |
|         if z <= altl[3]:
 | |
|             # Turbopause 
 | |
|             zh32 = pdm[3,2]
 | |
|             # Mixed density at Zlb
 | |
|             b32,output['t']['TG'] = densu(zh32,db32,tinf,tlb,32-xmm,alpha[3]-1, output['t']['TG'],ptm[5],s,zn1,meso_tn1,meso_tgn1,gsurf,re)
 | |
|             #  Mixed density at Alt 
 | |
|             dm32,output['t']['TG'] = densu(z,b32,tinf,tlb,xmm,0,output['t']['TG'],ptm[5],s,zn1,meso_tn1,meso_tgn1,gsurf,re)
 | |
|             zhm32 = zhm28
 | |
|             # Net density at Alt
 | |
|             output['d']['O2'] = dnet(output['d']['O2'],dm32,zhm32,xmm,32)
 | |
|             # Correction to specified mixing ratio at ground 
 | |
|             rl = np.log(b28*pdm[3,1]/b32)
 | |
|             hc32 = pdm[3,5]*pdl[1,7]
 | |
|             zc32 = pdm[3,4]*pdl[1,6]
 | |
|             output['d']['O2'] = output['d']['O2']*ccor(z,rl,hc32,zc32)
 | |
| 
 | |
|         # Correction for general departure from diffusive equilibrium above Zlb */
 | |
|         hcc32 = pdm[3,7]*pdl[1,22]
 | |
|         hcc232 = pdm[3,7]*pdl[0,22]
 | |
|         zcc32 = pdm[3,6]*pdl[1,21]
 | |
|         rc32 = pdm[3,3]*pdl[1,23]*(1+flags['sw'][0]*pdl[0,23]*(inputp['f107A']-150))
 | |
|         # Net density corrected at Alt 
 | |
|         output['d']['O2'] = output['d']['O2']*ccor2(z,rc32,hcc32,zcc32,hcc232)
 | |
|     # AR density
 | |
|     # Density variation factor at Zlb 
 | |
|     tinf_tmp,varli = globe7(pd[5],inputp,flags)
 | |
|     g40 = flags['sw'][20]*tinf_tmp
 | |
|     # Diffusive density at Zlb 
 | |
|     db40 = pdm[4,0]*np.exp(g40)*pd[5,0]
 | |
|     # Diffusive density at Alt
 | |
|     output['d']['AR'],output['t']['TG'] = densu(z,db40,tinf,tlb, 40,alpha[4],output['t']['TG'],ptm[5],s,zn1,meso_tn1,meso_tgn1,gsurf,re)
 | |
|     dd = output['d']['AR']
 | |
|     if flags['sw'][14] and z <= altl[4]:
 | |
|         # Turbopause
 | |
|         zh40 = pdm[4,2]
 | |
|         # Mixed density at Zlb 
 | |
|         b40,output['t']['TG'] = densu(zh40,db40,tinf,tlb,40-xmm,alpha[4]-1,output['t']['TG'],ptm[5],s,zn1,meso_tn1,meso_tgn1,gsurf,re)
 | |
|         # Mixed density at Alt
 | |
|         dm40,output['t']['TG'] = densu(z,b40,tinf,tlb,xmm,0,output['t']['TG'],ptm[5],s,zn1,meso_tn1,meso_tgn1,gsurf,re)
 | |
|         zhm40 = zhm28
 | |
|         # Net density at Alt 
 | |
|         output['d']['AR'] = dnet(output['d']['AR'],dm40,zhm40,xmm,40)
 | |
|         # Correction to specified mixing ratio at ground 
 | |
|         rl = np.log(b28*pdm[4,1]/b40)
 | |
|         hc40 = pdm[4,5]*pdl[1,9]
 | |
|         zc40 = pdm[4,4]*pdl[1,8]
 | |
|         # Net density corrected at Alt
 | |
|         output['d']['AR'] = output['d']['AR']*ccor(z,rl,hc40,zc40)
 | |
|         
 | |
|     # Hydrogen density 
 | |
|     # Density variation factor at Zlb */
 | |
|     tinf_tmp,varli = globe7(pd[6], inputp, flags)
 | |
|     g1 = flags['sw'][20]*tinf_tmp
 | |
|     # Diffusive density at Zlb 
 | |
|     db01 = pdm[5,0]*np.exp(g1)*pd[6,0]
 | |
|     # Diffusive density at Alt
 | |
|     output['d']['H'],output['t']['TG']=densu(z,db01,tinf,tlb,1,alpha[6],output['t']['TG'],ptm[5],s,zn1,meso_tn1,meso_tgn1,gsurf,re)
 | |
|     dd = output['d']['H']
 | |
|     if flags['sw'][14] and z <= altl[6]:
 | |
|         # Turbopause 
 | |
|         zh01 = pdm[5,2]
 | |
|         # Mixed density at Zlb
 | |
|         b01,output['t']['TG'] = densu(zh01,db01,tinf,tlb,1-xmm,alpha[6]-1, output['t']['TG'],ptm[5],s,zn1,meso_tn1,meso_tgn1,gsurf,re)
 | |
|         # Mixed density at Alt 
 | |
|         dm01,output['t']['TG'] = densu(z,b01,tinf,tlb,xmm,0,output['t']['TG'],ptm[5],s,zn1,meso_tn1,meso_tgn1,gsurf,re)
 | |
|         zhm01 = zhm28
 | |
|         # Net density at Alt
 | |
|         output['d']['H'] = dnet(output['d']['H'],dm01,zhm01,xmm,1)
 | |
|         # Correction to specified mixing ratio at ground 
 | |
|         rl = np.log(b28*pdm[5,1]*np.abs(pdl[1,17])/b01)
 | |
|         hc01 = pdm[5,5]*pdl[1,11]
 | |
|         zc01 = pdm[5,4]*pdl[1,10]
 | |
|         output['d']['H'] = output['d']['H']*ccor(z,rl,hc01,zc01)
 | |
|         # Chemistry correction 
 | |
|         hcc01 = pdm[5,7]*pdl[1,19]
 | |
|         zcc01 = pdm[5,6]*pdl[1,18]
 | |
|         rc01 = pdm[5,3]*pdl[1,20]
 | |
|         # Net density corrected at Alt
 | |
|         output['d']['H'] = output['d']['H']*ccor(z,rc01,hcc01,zcc01)
 | |
|     
 | |
|     # Atomic Nitrogen density 
 | |
|     # Density variation factor at Zlb */
 | |
|     tinf_tmp,varli = globe7(pd[7],inputp,flags)
 | |
|     g14 = flags['sw'][20]*tinf_tmp
 | |
|     # Diffusive density at Zlb 
 | |
|     db14 = pdm[6,0]*np.exp(g14)*pd[7,0]
 | |
|     # Diffusive density at Alt 
 | |
|     output['d']['N'],output['t']['TG']=densu(z,db14,tinf,tlb,14,alpha[7],output['t']['TG'],ptm[5],s,zn1,meso_tn1,meso_tgn1,gsurf,re)
 | |
|     dd = output['d']['N']
 | |
|     if flags['sw'][14] and z <= altl[7]:
 | |
|         # Turbopause
 | |
|         zh14 = pdm[6,2]
 | |
|         # Mixed density at Zlb
 | |
|         b14,output['t']['TG'] = densu(zh14,db14,tinf,tlb,14-xmm,alpha[7]-1, output['t']['TG'],ptm[5],s,zn1,meso_tn1,meso_tgn1,gsurf,re)
 | |
|         # Mixed density at Alt 
 | |
|         dm14,output['t']['TG'] = densu(z,b14,tinf,tlb,xmm,0,output['t']['TG'],ptm[5],s,zn1,meso_tn1,meso_tgn1,gsurf,re)
 | |
|         zhm14 = zhm28
 | |
|         # Net density at Alt
 | |
|         output['d']['N'] = dnet(output['d']['N'],dm14,zhm14,xmm,14)
 | |
|         # Correction to specified mixing ratio at ground 
 | |
|         rl = np.log(b28*pdm[6,1]*np.abs(pdl[0,2])/b14)
 | |
|         hc14 = pdm[6,5]*pdl[0,1]
 | |
|         zc14 = pdm[6,4]*pdl[0,0]
 | |
|         output['d']['N'] = output['d']['N']*ccor(z,rl,hc14,zc14)
 | |
|         # Chemistry correction
 | |
|         hcc14 = pdm[6,7]*pdl[0,4]
 | |
|         zcc14 = pdm[6,6]*pdl[0,3]
 | |
|         rc14 = pdm[6,3]*pdl[0,5]
 | |
|         # Net density corrected at Alt
 | |
|         output['d']['N'] = output['d']['N']*ccor(z,rc14,hcc14,zcc14)
 | |
|     
 | |
|     # Anomalous Oxygen density 
 | |
|     tinf_tmp,varli = globe7(pd[8],inputp,flags)
 | |
|     g16h = flags['sw'][20]*tinf_tmp
 | |
|     db16h = pdm[7,0]*np.exp(g16h)*pd[8,0]
 | |
|     tho = pdm[7,9]*pdl[0,6]
 | |
|     dd,output['t']['TG'] = densu(z,db16h,tho,tho,16,alpha[8],output['t']['TG'],ptm[5],s, zn1,meso_tn1,meso_tgn1,gsurf,re)
 | |
|     zsht = pdm[7,5]
 | |
|     zmho = pdm[7,4]
 | |
|     zsho = scalh(zmho,16,tho,gsurf,re)
 | |
|     output['d']['ANM O'] = dd*np.exp(-zsht/zsho*(np.exp(-(z-zmho)/zsht)-1))
 | |
| 
 | |
|     # total mass density
 | |
|     output['d']['RHO'] = 1.66E-24*(4*output['d']['He']+16*output['d']['O']+28*output['d']['N2']\
 | |
|                                    +32*output['d']['O2']+40*output['d']['AR']+ output['d']['H']+14*output['d']['N'])
 | |
| 
 | |
|     # temperature 
 | |
|     z = inputp['alt']
 | |
|     ddum,output['t']['TG'] = densu(z,1, tinf, tlb, 0, 0, output['t']['TG'], ptm[5], s, zn1, meso_tn1, meso_tgn1,gsurf,re)
 | |
| 
 | |
|     # convert to g/cm^3 
 | |
|     for key in output['d'].keys():
 | |
|         output['d'][key] = output['d'][key]*1.0E6
 | |
|     output['d']['RHO'] = output['d']['RHO']/1000    
 | |
|     return output,dm28,[meso_tn1,meso_tn2,meso_tn3,meso_tgn1,meso_tgn2,meso_tgn3],varli |