274 lines
9.3 KiB
Python
Raw Permalink Normal View History

2025-08-07 11:13:12 +08:00
import torch
import torch.nn as nn
import torch.nn.functional as F
import time
import timm
def filter(opState, kernelsize=5):
#B*100*2
Bs = opState.shape[0]
ches = opState.shape[1]
recL = int((kernelsize-3)/2)
labelTable = torch.zeros(Bs, int(ches+2*recL),opState.shape[2]).cuda()
labelTable[:,:recL,:] = opState[:,0,:].unsqueeze(dim=1)
labelTable[:,-recL:,:] = opState[:,-1,:].unsqueeze(dim=1)
labelTable[:,recL:-recL,:] = opState
newOpState = torch.zeros_like(opState)
tmpT = labelTable.unfold(1, kernelsize, 1)
tmpMeanT = torch.mean(tmpT, dim=-1)
newOpState[:,1:-1,:] = tmpMeanT
newOpState[:,0,:] = opState[:,0,:]
newOpState[:,-1,:] = opState[:,-1,:]
return newOpState
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1):
super(BasicBlock, self).__init__()
self.conv1 = nn.Conv2d(
in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3,
stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, self.expansion *
planes, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(self.expansion*planes)
self.shortcut = nn.Sequential()
if stride != 1 or in_planes != self.expansion*planes:
self.shortcut = nn.Sequential(
nn.Conv2d(in_planes, self.expansion*planes,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(self.expansion*planes)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = F.relu(self.bn2(self.conv2(out)))
out = self.bn3(self.conv3(out))
out += self.shortcut(x)
out = F.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=600):
super(ResNet, self).__init__()
self.in_planes = 64
self.conv1 = nn.Conv2d(4, 64, kernel_size=3,
stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
self.linear = nn.Linear(512*block.expansion, num_classes)
def _make_layer(self, block, planes, num_blocks, stride):
strides = [stride] + [1]*(num_blocks-1)
layers = []
for stride in strides:
layers.append(block(self.in_planes, planes, stride))
self.in_planes = planes * block.expansion
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = F.avg_pool2d(out, 4)
out = out.view(out.size(0), -1)
out = self.linear(out)
return out
def ResNet18():
return ResNet(BasicBlock, [2, 2, 2, 2])
def ResNet34():
return ResNet(BasicBlock, [3, 4, 6, 3])
def ResNet50():
return ResNet(Bottleneck, [3, 4, 6, 3])
def ResNet101():
return ResNet(Bottleneck, [3, 4, 23, 3])
def ResNet152():
return ResNet(Bottleneck, [3, 8, 36, 3])
def test():
net = ResNet18()
y = net(torch.randn(1, 3, 32, 32))
print(y.size())
class resnet101(nn.Module):
def __init__(self, filter = 7):
super(resnet101, self).__init__()
self.image = timm.create_model('resnet101',num_classes=600)
self.image._modules['conv1'] = nn.Conv2d(4, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
# print(self.image)
self.filter = filter
def forward(self, x, labelState, labelRot):
Bs = x.shape[0]
ft = torch.reshape(self.image(x),(Bs,200,3))
# print("lo.shape", lo.shape)
opState = torch.zeros_like(labelState)
yw = ft[:,:,2]
cosyaw = torch.cos(yw).unsqueeze(dim=2) #b*100*1
sinyaw = torch.sin(yw).unsqueeze(dim=2) #b*100*1
rotOutput = torch.cat((cosyaw,sinyaw), dim=2) #b*100*2
opState[:,1:-1,:] = ft[:,1:-1,0:2]
opState[:,0,:] = labelState[:,0,:]
opState[:,-1,:] = labelState[:,-1,:]
# print("rotOutput.shape", rotOutput.shape)
# print("labelRot.shape", labelRot.shape)
rotOutput[:,0,:] = labelRot[:,0,:]
rotOutput[:,-1,:] = labelRot[:,-1,:]
if(self.filter >=3):
opState = filter(opState, self.filter)
rotOutput = filter(rotOutput, self.filter)#B*99*2
rotOutput = torch.nn.functional.normalize(rotOutput, dim=2)
return opState, rotOutput
class resnet50(nn.Module):
def __init__(self, filter = 7):
super(resnet50, self).__init__()
self.image = timm.create_model('resnet50',num_classes=600)
self.image._modules['conv1'] = nn.Conv2d(4, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
# print(self.image)
self.filter = filter
def forward(self, x, labelState, labelRot):
Bs = x.shape[0]
ft = torch.reshape(self.image(x),(Bs,200,3))
# print("lo.shape", lo.shape)
opState = torch.zeros_like(labelState)
yw = ft[:,:,2]
cosyaw = torch.cos(yw).unsqueeze(dim=2) #b*100*1
sinyaw = torch.sin(yw).unsqueeze(dim=2) #b*100*1
rotOutput = torch.cat((cosyaw,sinyaw), dim=2) #b*100*2
opState[:,1:-1,:] = ft[:,1:-1,0:2]
opState[:,0,:] = labelState[:,0,:]
opState[:,-1,:] = labelState[:,-1,:]
# print("rotOutput.shape", rotOutput.shape)
# print("labelRot.shape", labelRot.shape)
rotOutput[:,0,:] = labelRot[:,0,:]
rotOutput[:,-1,:] = labelRot[:,-1,:]
if(self.filter >=3):
opState = filter(opState, self.filter)
rotOutput = filter(rotOutput, self.filter)#B*99*2
rotOutput = torch.nn.functional.normalize(rotOutput, dim=2)
return opState, rotOutput
class resnet152(nn.Module):
def __init__(self, filter = 7):
super(resnet152, self).__init__()
self.image = timm.create_model('resnet152',num_classes=600)
self.image._modules['conv1'] = nn.Conv2d(4, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
# print(self.image)
self.filter = filter
def forward(self, x, labelState, labelRot):
Bs = x.shape[0]
ft = torch.reshape(self.image(x),(Bs,200,3))
# print("lo.shape", lo.shape)
opState = torch.zeros_like(labelState)
yw = ft[:,:,2]
cosyaw = torch.cos(yw).unsqueeze(dim=2) #b*100*1
sinyaw = torch.sin(yw).unsqueeze(dim=2) #b*100*1
rotOutput = torch.cat((cosyaw,sinyaw), dim=2) #b*100*2
opState[:,1:-1,:] = ft[:,1:-1,0:2]
opState[:,0,:] = labelState[:,0,:]
opState[:,-1,:] = labelState[:,-1,:]
# print("rotOutput.shape", rotOutput.shape)
# print("labelRot.shape", labelRot.shape)
rotOutput[:,0,:] = labelRot[:,0,:]
rotOutput[:,-1,:] = labelRot[:,-1,:]
if(self.filter >=3):
opState = filter(opState, self.filter)
rotOutput = filter(rotOutput, self.filter)#B*99*2
rotOutput = torch.nn.functional.normalize(rotOutput, dim=2)
return opState, rotOutput
# test()
if __name__ == "__main__":
# test()
pt = 200
model = resnet152(pt_num=pt, filter=7).cuda().half()
totalt = 0.0
count = 0
model.eval()
# out = model(input)
input = torch.rand(1,4,200,200).cuda().half()
labelState = torch.rand(1,pt,2).cuda().half()
labelRot = torch.rand(1,pt,2).cuda().half()
anchors = torch.rand(1,pt,20,20).cuda().half()
with torch.no_grad():
for i in range(100):
torch.cuda.synchronize()
start = time.time()
out = model(input, labelState, labelRot, anchors)
torch.cuda.synchronize()
end = time.time()
if i>=10:
totalt += 1000.0*(end-start)
count +=1
print("model time: ", totalt / count, " ms")