DPtraj/deepPathPlan/PathNet/SubLayers.py

140 lines
4.3 KiB
Python
Raw Normal View History

2025-08-07 11:13:12 +08:00
''' Define the sublayers in encoder/decoder layer
Derived From : https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/SubLayers.py
'''
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class ScaledDotProductAttention(nn.Module):
'''Scaled Dot-Product Attention
'''
def __init__(self, temperature):
'''
Initialize the model.
:param temperature: TODO ....
:param attn_dropout: Argument to dropout after softmax(QK)
'''
super().__init__()
self.temperature = temperature
def forward(self, q, k, v, mask=None):
'''
Callback Function:
:param q: The Query matrix.
:param k: The Key matrix.
:param v: The value matrix.
:param mask: The mask of the input.
:returns (output, attention): A tuple consisting of softmax(QK^T)V and softmax(QK^T)
'''
attn = torch.matmul(q / self.temperature, k.transpose(2, 3))
if mask is not None:
attn = attn.masked_fill(mask == 0, -1e9)
attn = F.softmax(attn, dim=-1)
output = torch.matmul(attn, v)
return output
class MultiHeadAttention(nn.Module):
''' Multi-Head Attention module '''
def __init__(self, n_head, d_model, d_k, d_v):
'''
Intialize the model.
:param n_head: Number of self-attention modules
:param d_model: Dimension of input/output of this layer
:param d_k: Dimension of each Key
:param d_v: Dimension of each Value
:param dropout:
'''
super().__init__()
self.n_head = n_head
self.d_k = d_k
self.d_v = d_v
self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False)
self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False)
self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False)
self.fc = nn.Linear(n_head * d_v, d_model, bias=False)
self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5)
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
def forward(self, q, k, v, mask=None):
'''
Callback function.
:param q: The Query matrix.
:param k: The Key matrix.
:param v: The value matrix.
:param mask: The mask to use.
:returns (output, attention): A tuple consisting of network output and softmax(QK^T)
'''
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
sz_b_q = q.size(0)
sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1)
residual = q
# Pass through the pre-attention projection: b x lq x (n*dv)
# Separate different heads: b x lq x n x dv
q = self.w_qs(q).view(sz_b_q, len_q, n_head, d_k)
k = self.w_ks(k).view(sz_b, len_k, n_head, d_k)
v = self.w_vs(v).view(sz_b, len_v, n_head, d_v)
# Transpose for attention dot product: b x n x lq x dv
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)
if mask is not None:
mask = mask.unsqueeze(1) # For head axis broadcasting.
q = self.attention(q, k, v, mask=mask)
# Transpose to move the head dimension back: b x lq x n x dv
# Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv)
q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1)
q = self.fc(q)
q += residual
q = self.layer_norm(q)
return q
class PositionwiseFeedForward(nn.Module):
''' A simple 2 layer with fully connected layer.
'''
def __init__(self, d_in, d_hid):
'''
Initialize the model.
:param d_in: Dimension of the input/output of the model.
:param d_hid: Dimension of the hidden layer.
:param dropout: Argument to the dropout layer.
'''
super().__init__()
self.w_1 = nn.Linear(d_in, d_hid) # position-wise
self.w_2 = nn.Linear(d_hid, d_in) # position-wise
self.layer_norm = nn.LayerNorm(d_in, eps=1e-6)
def forward(self, x):
'''
Callback function.
:param x: The input to the function.
:returns torch.array: An output of the same dimension as the input.
'''
residual = x
x = self.w_2(F.relu(self.w_1(x)))
x += residual
x = self.layer_norm(x)
return x