# distutils: language=c++ import ctypes cimport cython from ctree cimport CMinMaxStatsList, CNode, CRoots, CSearchResults, cbatch_back_propagate, cbatch_traverse from libcpp.vector cimport vector from libc.stdlib cimport malloc, free from libcpp.list cimport list as cpplist import numpy as np cimport numpy as np ctypedef np.npy_float FLOAT ctypedef np.npy_intp INTP cdef class MinMaxStatsList: cdef CMinMaxStatsList *cmin_max_stats_lst def __cinit__(self, int num): self.cmin_max_stats_lst = new CMinMaxStatsList(num) def set_delta(self, float value_delta_max): self.cmin_max_stats_lst[0].set_delta(value_delta_max) def __dealloc__(self): del self.cmin_max_stats_lst cdef class ResultsWrapper: cdef CSearchResults cresults def __cinit__(self, int num): self.cresults = CSearchResults(num) def get_search_len(self): return self.cresults.search_lens cdef class Roots: cdef int root_num cdef int pool_size cdef CRoots *roots def __cinit__(self, int root_num, int action_num, int tree_nodes): self.root_num = root_num self.pool_size = action_num * (tree_nodes + 2) self.roots = new CRoots(root_num, action_num, self.pool_size) def prepare(self, float root_exploration_fraction, list noises, list value_prefix_pool, list policy_logits_pool): self.roots[0].prepare(root_exploration_fraction, noises, value_prefix_pool, policy_logits_pool) def prepare_no_noise(self, list value_prefix_pool, list policy_logits_pool): self.roots[0].prepare_no_noise(value_prefix_pool, policy_logits_pool) def get_trajectories(self): return self.roots[0].get_trajectories() def get_distributions(self): return self.roots[0].get_distributions() def get_values(self): return self.roots[0].get_values() def clear(self): self.roots[0].clear() def __dealloc__(self): del self.roots @property def num(self): return self.root_num cdef class Node: cdef CNode cnode def __cinit__(self): pass def __cinit__(self, float prior, int action_num): # self.cnode = CNode(prior, action_num) pass def expand(self, int to_play, int hidden_state_index_x, int hidden_state_index_y, float value_prefix, list policy_logits): cdef vector[float] cpolicy = policy_logits self.cnode.expand(to_play, hidden_state_index_x, hidden_state_index_y, value_prefix, cpolicy) def batch_back_propagate(int hidden_state_index_x, float discount, list value_prefixs, list values, list policies, MinMaxStatsList min_max_stats_lst, ResultsWrapper results, list is_reset_lst): cdef int i cdef vector[float] cvalue_prefixs = value_prefixs cdef vector[float] cvalues = values cdef vector[vector[float]] cpolicies = policies cbatch_back_propagate(hidden_state_index_x, discount, cvalue_prefixs, cvalues, cpolicies, min_max_stats_lst.cmin_max_stats_lst, results.cresults, is_reset_lst) def batch_traverse(Roots roots, int pb_c_base, float pb_c_init, float discount, MinMaxStatsList min_max_stats_lst, ResultsWrapper results): cbatch_traverse(roots.roots, pb_c_base, pb_c_init, discount, min_max_stats_lst.cmin_max_stats_lst, results.cresults) return results.cresults.hidden_state_index_x_lst, results.cresults.hidden_state_index_y_lst, results.cresults.last_actions