# distutils: language=c++ import ctypes cimport cython from ctree cimport CMinMaxStatsList, CRoots, CSearchResults, c_batch_sequential_halving, c_batch_traverse, c_batch_back_propagate from libcpp.vector cimport vector from libc.stdlib cimport malloc, free from libcpp.list cimport list as cpplist import numpy as np cimport numpy as np ctypedef np.npy_float FLOAT ctypedef np.npy_intp INTP cdef class MinMaxStatsList: cdef CMinMaxStatsList *cmin_max_stats_lst def __cinit__(self, int num): self.cmin_max_stats_lst = new CMinMaxStatsList(num) def set_static_val(self, float value_delta_max, int c_visit, float c_scale): self.cmin_max_stats_lst[0].set_static_val(value_delta_max, c_visit, c_scale) def __dealloc__(self): del self.cmin_max_stats_lst cdef class ResultsWrapper: cdef CSearchResults cresults def __cinit__(self, int num): self.cresults = CSearchResults(num) def get_search_len(self): return self.cresults.search_lens cdef class Roots: cdef int num_roots cdef int pool_size cdef float discount cdef CRoots *roots def __cinit__(self, int num_roots, int action_num, int tree_nodes, float discount): self.num_roots = num_roots self.pool_size = action_num * (tree_nodes + 2) self.discount = discount self.roots = new CRoots(num_roots, action_num, self.pool_size, discount) def prepare(self, list values, list policies, int leaf_action_num): self.roots[0].prepare(values, policies, leaf_action_num) def get_trajectories(self): return self.roots[0].get_trajectories() def get_distributions(self): return self.roots[0].get_distributions() def get_root_policies(self, MinMaxStatsList min_max_stats_lst): return self.roots[0].get_root_policies(min_max_stats_lst.cmin_max_stats_lst) def get_best_actions(self): return self.roots[0].get_best_actions() def get_values(self): return self.roots[0].get_values() def print_tree(self): return self.roots[0].print_tree() def clear(self): self.roots[0].clear() def __dealloc__(self): del self.roots @property def num(self): return self.num_roots def batch_sequential_halving(Roots roots, list gumble_noises, MinMaxStatsList min_max_stats_lst, int current_phase, int current_num_top_actions): cdef vector[vector[float]] c_gumble_noises = gumble_noises return c_batch_sequential_halving(roots.roots, c_gumble_noises, min_max_stats_lst.cmin_max_stats_lst, current_phase, current_num_top_actions) def batch_traverse(Roots roots, MinMaxStatsList min_max_stats_lst, ResultsWrapper results, int num_simulations, int simulation_idx, list gumbel_noises, int current_num_top_actions): # cdef vector[vector[float]] c_gumbel_noises = gumbel_noises c_batch_traverse(roots.roots, min_max_stats_lst.cmin_max_stats_lst, results.cresults, num_simulations, simulation_idx, gumbel_noises, current_num_top_actions) return results.cresults.hidden_state_index_x_lst, results.cresults.hidden_state_index_y_lst, results.cresults.last_actions def batch_back_propagate(int hidden_state_index_x, list next_value_prefixes, list next_values, list next_logits, MinMaxStatsList min_max_stats_lst, ResultsWrapper results, list is_reset_lst, int leaf_action_num): cdef vector[float] c_value_prefixs = next_value_prefixes cdef vector[float] c_next_values = next_values cdef vector[vector[float]] c_policies = next_logits cdef vector[int] c_is_reset_lst = is_reset_lst c_batch_back_propagate(hidden_state_index_x, c_value_prefixs, c_next_values, c_policies, min_max_stats_lst.cmin_max_stats_lst, results.cresults, c_is_reset_lst, leaf_action_num)