“Shengjiewang-Jason” 1367bca203 first commit
2024-06-07 16:02:01 +08:00

186 lines
7.7 KiB
Cython

# distutils: language=c++
import ctypes
cimport cython
from ctree cimport CMinMaxStats, CMinMaxStatsList, CNode, CRoots, CSearchResults, cback_propagate, cmulti_back_propagate, cmulti_traverse, cmulti_traverse_return_path
# from ctree cimport CMinMaxStats, CNode, cback_propagate, cmulti_back_propagate, cselect_child, cucb_score
from libcpp.vector cimport vector
from libc.stdlib cimport malloc, free
from libcpp.list cimport list as cpplist
import numpy as np
cimport numpy as np
ctypedef np.npy_float FLOAT
ctypedef np.npy_intp INTP
cdef class MinMaxStatsList:
cdef CMinMaxStatsList *cmin_max_stats_lst
def __cinit__(self, int num):
self.cmin_max_stats_lst = new CMinMaxStatsList(num)
def set_delta(self, float value_delta_max):
self.cmin_max_stats_lst[0].set_delta(value_delta_max)
def get_min_max(self):
self.cmin_max_stats_lst[0].get_min_max()
def __dealloc__(self):
del self.cmin_max_stats_lst
cdef class ResultsWrapper:
cdef CSearchResults cresults
def __cinit__(self, int num):
self.cresults = CSearchResults(num)
def get_search_len(self):
return self.cresults.search_lens
# cdef class Roots:
# cdef int root_num
# cdef int pool_size
# cdef CRoots *roots
#
# def __cinit__(self, int root_num, int action_num, int tree_nodes):
# self.root_num = root_num
# self.pool_size = action_num * (tree_nodes + 2)
# self.roots = new CRoots(root_num, action_num, self.pool_size)
#
# def prepare(self, float root_exploration_fraction, list noises, list reward_sum_pool, list policy_logits_pool):
# self.roots[0].prepare(root_exploration_fraction, noises, reward_sum_pool, policy_logits_pool)
#
# def prepare_no_noise(self, list reward_sum_pool, list policy_logits_pool):
# self.roots[0].prepare_no_noise(reward_sum_pool, policy_logits_pool)
#
# def get_trajectories(self):
# return self.roots[0].get_trajectories()
#
# def get_distributions(self):
# return self.roots[0].get_distributions()
#
# def get_values(self):
# return self.roots[0].get_values()
#
# def clear(self):
# self.roots[0].clear()
#
# def __dealloc__(self):
# del self.roots
#
# @property
# def num(self):
# return self.root_num
cdef class Node:
cdef CNode cnode
def __cinit__(self):
pass
def __cinit__(self, float prior, int action_num):
# self.cnode = CNode(prior, action_num)
pass
def expand(self, int to_play, int hidden_state_index_x, int hidden_state_index_y, float reward_sum, list policy_logits, int simulation_num):
cdef vector[float] cpolicy = policy_logits
self.cnode.expand(to_play, hidden_state_index_x, hidden_state_index_y, reward_sum, cpolicy, simulation_num)
# def expand_q_init(self, int to_play, int hidden_state_index_x, int hidden_state_index_y, float reward_sum, list policy_logits, list q_inits):
# cdef vector[float] cpolicy = policy_logits
# cdef vector[float] cq_inits = q_inits
# self.cnode.expand_q_init(to_play, hidden_state_index_x, hidden_state_index_y, reward_sum, cpolicy, cq_inits)
# def multi_back_propagate(int hidden_state_index_x, float discount, list reward_sums, list values, list policies, MinMaxStatsList min_max_stats_lst, ResultsWrapper results, list is_reset_lst, list similarities):
# cdef int i
# cdef vector[float] creward_sums = reward_sums
# cdef vector[float] cvalues = values
# cdef vector[vector[float]] cpolicies = policies
# cdef vector[float] csimilarities = similarities
#
# cmulti_back_propagate(hidden_state_index_x, discount, creward_sums, cvalues, cpolicies,
# min_max_stats_lst.cmin_max_stats_lst, results.cresults, is_reset_lst, csimilarities)
#
#
# def multi_traverse(Roots roots, int pb_c_base, float pb_c_init, float discount, MinMaxStatsList min_max_stats_lst, ResultsWrapper results, int use_mcgs):
#
# cmulti_traverse(roots.roots, pb_c_base, pb_c_init, discount, min_max_stats_lst.cmin_max_stats_lst, results.cresults, use_mcgs)
#
# return results.cresults.hidden_state_index_x_lst, results.cresults.hidden_state_index_y_lst, results.cresults.last_actions
cdef class Roots:
cdef int root_num
cdef int pool_size
cdef CRoots *roots
def __cinit__(self, int root_num, int action_num, int tree_nodes):
self.root_num = root_num
self.pool_size = action_num * (tree_nodes + 2)
self.roots = new CRoots(root_num, action_num, self.pool_size)
def prepare(self, list reward_sum_pool, list policy_logits_pool, int m, int simulation_num, list values):
self.roots[0].prepare(reward_sum_pool, policy_logits_pool, m, simulation_num, values)
# def prepare_q_init(self, list reward_sum_pool, list policy_logits_pool, int m, int simulation_num, list values, list q_inits):
# self.roots[0].prepare_q_init(reward_sum_pool, policy_logits_pool, m, simulation_num, values, q_inits)
def get_trajectories(self):
return self.roots[0].get_trajectories()
def get_values(self):
return self.roots[0].get_values()
def get_priors(self):
return self.roots[0].get_priors()
def get_advantages(self, float discount):
return self.roots[0].get_advantages(discount)
def get_pi_primes(self, MinMaxStatsList min_max_stats_lst, float c_visit, float c_scale, float discount):
return self.roots[0].get_pi_primes(min_max_stats_lst.cmin_max_stats_lst, c_visit, c_scale, discount)
def get_actions(self, MinMaxStatsList min_max_stats_lst, float c_visit, float c_scale, list gumbels, float discount):
return self.roots[0].get_actions(min_max_stats_lst.cmin_max_stats_lst, c_visit, c_scale, gumbels, discount)
def get_child_values(self, float discount):
return self.roots[0].get_child_values(discount)
def clear(self):
self.roots[0].clear()
def __dealloc__(self):
del self.roots
@property
def num(self):
return self.root_num
def multi_back_propagate(int hidden_state_index_x, float discount, list reward_sums, list values, list policies, MinMaxStatsList min_max_stats_lst, ResultsWrapper results, list is_reset_lst, int simulation_idx, list gumbels, float c_visit, float c_scale, int simulation_num):
cdef int i
cdef vector[float] creward_sums = reward_sums
cdef vector[float] cvalues = values
cdef vector[vector[float]] cpolicies = policies
cdef vector[vector[float]] cgumbels = gumbels
cdef vector[int] cis_reset_lst = is_reset_lst
cmulti_back_propagate(hidden_state_index_x, discount, creward_sums, cvalues, cpolicies,
min_max_stats_lst.cmin_max_stats_lst, results.cresults, cis_reset_lst, simulation_idx, cgumbels, c_visit, c_scale, simulation_num)
def multi_traverse(Roots roots, float c_visit, float c_scale, float discount, MinMaxStatsList min_max_stats_lst, ResultsWrapper results, int simulation_idx, list gumbels, int use_transformer):
cdef vector[vector[float]] cgumbels = gumbels
if use_transformer == 0:
cmulti_traverse(roots.roots, c_visit, c_scale, discount, min_max_stats_lst.cmin_max_stats_lst, results.cresults, simulation_idx, cgumbels)
return results.cresults.hidden_state_index_x_lst, results.cresults.hidden_state_index_y_lst, results.cresults.last_actions, None, None, None
else:
# print('here1')
cmulti_traverse_return_path(roots.roots, c_visit, c_scale, discount, min_max_stats_lst.cmin_max_stats_lst, results.cresults, simulation_idx, cgumbels)
return results.cresults.hidden_state_index_x_lst, results.cresults.hidden_state_index_y_lst, \
results.cresults.last_actions, results.cresults.search_path_index_x_lst, \
results.cresults.search_path_index_y_lst, results.cresults.search_path_actions