EfficientZeroV2/ez/utils/distribution.py
“Shengjiewang-Jason” 1367bca203 first commit
2024-06-07 16:02:01 +08:00

212 lines
6.9 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.autograd import Variable
import math
from numbers import Number
from torch import distributions as pyd
from torch.distributions.utils import _standard_normal
from torch.distributions.independent import Independent
from torch.distributions import Distribution, constraints
from torch.distributions.utils import broadcast_all
CONST_SQRT_2 = math.sqrt(2)
CONST_INV_SQRT_2PI = 1 / math.sqrt(2 * math.pi)
CONST_INV_SQRT_2 = 1 / math.sqrt(2)
CONST_LOG_INV_SQRT_2PI = math.log(CONST_INV_SQRT_2PI)
CONST_LOG_SQRT_2PI_E = 0.5 * math.log(2 * math.pi * math.e)
class TruncatedStandardNormal(Distribution):
"""
Truncated Standard Normal distribution
https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
"""
arg_constraints = {
'a': constraints.real,
'b': constraints.real,
}
has_rsample = True
def __init__(self, a=-1.0, b=1.0, validate_args=None):
self.a, self.b = broadcast_all(a, b)
if isinstance(a, Number) and isinstance(b, Number):
batch_shape = torch.Size()
else:
batch_shape = self.a.size()
super(TruncatedStandardNormal, self).__init__(batch_shape, validate_args=validate_args)
if self.a.dtype != self.b.dtype:
raise ValueError('Truncation bounds types are different')
if any((self.a >= self.b).view(-1,).tolist()):
raise ValueError('Incorrect truncation range')
eps = torch.finfo(self.a.dtype).eps
self._dtype_min_gt_0 = eps
self._dtype_max_lt_1 = 1 - eps
self._little_phi_a = self._little_phi(self.a)
self._little_phi_b = self._little_phi(self.b)
self._big_phi_a = self._big_phi(self.a)
self._big_phi_b = self._big_phi(self.b)
self._Z = (self._big_phi_b - self._big_phi_a).clamp_min(eps)
self._log_Z = self._Z.log()
little_phi_coeff_a = torch.nan_to_num(self.a, nan=math.nan)
little_phi_coeff_b = torch.nan_to_num(self.b, nan=math.nan)
self._lpbb_m_lpaa_d_Z = (self._little_phi_b * little_phi_coeff_b - self._little_phi_a * little_phi_coeff_a) / self._Z
self._mean = -(self._little_phi_b - self._little_phi_a) / self._Z
self._variance = 1 - self._lpbb_m_lpaa_d_Z - ((self._little_phi_b - self._little_phi_a) / self._Z) ** 2
self._entropy = CONST_LOG_SQRT_2PI_E + self._log_Z - 0.5 * self._lpbb_m_lpaa_d_Z
@constraints.dependent_property
def support(self):
return constraints.interval(self.a, self.b)
@property
def mean(self):
return self._mean
@property
def variance(self):
return self._variance
@property
def entropy(self):
return self._entropy
@property
def auc(self):
return self._Z
@staticmethod
def _little_phi(x):
return (-(x ** 2) * 0.5).exp() * CONST_INV_SQRT_2PI
@staticmethod
def _big_phi(x):
return 0.5 * (1 + (x * CONST_INV_SQRT_2).erf())
@staticmethod
def _inv_big_phi(x):
return CONST_SQRT_2 * (2 * x - 1).erfinv()
def cdf(self, value):
if self._validate_args:
self._validate_sample(value)
return ((self._big_phi(value) - self._big_phi_a) / self._Z).clamp(0, 1)
def icdf(self, value):
return self._inv_big_phi(self._big_phi_a + value * self._Z)
def log_prob(self, value):
if self._validate_args:
self._validate_sample(value)
return CONST_LOG_INV_SQRT_2PI - self._log_Z - (value ** 2) * 0.5
def rsample(self, sample_shape=torch.Size()):
shape = self._extended_shape(sample_shape)
p = torch.empty(shape, device=self.a.device).uniform_(self._dtype_min_gt_0, self._dtype_max_lt_1)
return self.icdf(p)
class TruncatedNormal(TruncatedStandardNormal):
"""
Truncated Normal distribution
https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
"""
has_rsample = True
def __init__(self, loc, scale, a=-1.0, b=1.0, validate_args=None):
self.loc, self.scale, a, b = broadcast_all(loc, scale, a, b)
a = (a - self.loc) / self.scale
b = (b - self.loc) / self.scale
super(TruncatedNormal, self).__init__(a, b, validate_args=validate_args)
self._log_scale = self.scale.log()
self._mean = self._mean * self.scale + self.loc
self._variance = self._variance * self.scale ** 2
self._entropy += self._log_scale
def _to_std_rv(self, value):
return (value - self.loc) / self.scale
def _from_std_rv(self, value):
return value * self.scale + self.loc
def cdf(self, value):
return super(TruncatedNormal, self).cdf(self._to_std_rv(value))
def icdf(self, value):
return self._from_std_rv(super(TruncatedNormal, self).icdf(value))
def log_prob(self, value):
return super(TruncatedNormal, self).log_prob(self._to_std_rv(value)) - self._log_scale
class TanhTransform(pyd.transforms.Transform):
domain = pyd.constraints.real
codomain = pyd.constraints.interval(-1.0, 1.0)
bijective = True
sign = +1
def __init__(self, cache_size=1):
super().__init__(cache_size=cache_size)
@staticmethod
def atanh(x):
return 0.5 * (x.log1p() - (-x).log1p())
def __eq__(self, other):
return isinstance(other, TanhTransform)
def _call(self, x):
return x.tanh()
def _inverse(self, y):
# We do not clamp to the boundary here as it may degrade the performance of certain algorithms.
# one should use `cache_size=1` instead
return self.atanh(y)
def log_abs_det_jacobian(self, x, y):
# We use a formula that is more numerically stable, see details in the following link
# https://github.com/tensorflow/probability/commit/ef6bb176e0ebd1cf6e25c6b5cecdd2428c22963f#diff-e120f70e92e6741bca649f04fcd907b7
return 2. * (math.log(2.) - x - F.softplus(-2. * x))
class SquashedNormal(pyd.transformed_distribution.TransformedDistribution):
def __init__(self, loc, scale):
self.loc = loc
self.scale = scale
self.base_dist = pyd.Normal(loc, scale)
# self.base_dist = Independent(pyd.Normal(loc, scale), 1)
transforms = [TanhTransform()]
super().__init__(self.base_dist, transforms)
@property
def mean(self):
mu = self.loc
for tr in self.transforms:
mu = tr(mu)
return mu
class ContDist:
def __init__(self, dist=None):
super().__init__()
self._dist = dist
self.mean = dist.mean
def __getattr__(self, name):
return getattr(self._dist, name)
def entropy(self):
return self._dist.entropy()
def mode(self):
return self._dist.mean
def sample(self, sample_shape=()):
return self._dist.rsample(sample_shape)
def log_prob(self, x):
return self._dist.log_prob(x)