diff --git a/v4/ppo.py b/v4/ppo.py new file mode 100644 index 0000000..80bc2f8 --- /dev/null +++ b/v4/ppo.py @@ -0,0 +1,314 @@ +import argparse +import os +import random +import time + +import gym +import numpy as np +import torch +import torch.nn as nn +import torch.optim as optim +from stable_baselines3.common.atari_wrappers import ( + ClipRewardEnv, + EpisodicLifeEnv, + FireResetEnv, + MaxAndSkipEnv, + NoopResetEnv +) +from torch.distributions.categorical import Categorical +from torch.utils.tensorboard import SummaryWriter +from tqdm import tqdm + + +def get_args(): + parser = argparse.ArgumentParser() + parser.add_argument('--exp_name', type=str, default=os.path.basename(__file__).rstrip('.py')) + parser.add_argument('--gym_id', type=str, default='BreakoutNoFrameskip-v4') + parser.add_argument('--learning_rate', type=float, default=2.5e-4) + parser.add_argument('--seed', type=int, default=1) + parser.add_argument('--total_steps', type=int, default=int(1e7)) + parser.add_argument('--use_cuda', type=bool, default=True) + parser.add_argument('--num_envs', type=int, default=8) + parser.add_argument('--num_steps', type=int, default=128) + parser.add_argument('--lr_decay', type=bool, default=True) + parser.add_argument('--use_gae', type=bool, default=True) + parser.add_argument('--gae_lambda', type=float, default=0.95) + parser.add_argument('--gamma', type=float, default=0.99) + parser.add_argument('--num_mini_batches', type=int, default=4) + parser.add_argument('--update_epochs', type=int, default=8) + parser.add_argument('--norm_adv', type=bool, default=True) + parser.add_argument('--clip_value_loss', type=bool, default=True) + parser.add_argument('--c_1', type=float, default=1.0) + parser.add_argument('--c_2', type=float, default=0.01) + parser.add_argument('--max_grad_norm', type=float, default=0.5) + parser.add_argument('--clip_epsilon', type=float, default=0.2) + a = parser.parse_args() + a.batch_size = int(a.num_envs * a.num_steps) + a.minibatch_size = int(a.batch_size // a.num_mini_batches) + return a + + +def make_env(gym_id, seed): + def thunk(): + env = gym.make(gym_id) + env = gym.wrappers.RecordEpisodeStatistics(env) + env = NoopResetEnv(env, noop_max=30) + env = MaxAndSkipEnv(env, skip=4) + env = EpisodicLifeEnv(env) + if 'FIRE' in env.unwrapped.get_action_meanings(): + env = FireResetEnv(env) + env = ClipRewardEnv(env) + env = gym.wrappers.ResizeObservation(env, (84, 84)) + env = gym.wrappers.GrayScaleObservation(env) + env = gym.wrappers.FrameStack(env, 4) + env.seed(seed) + env.action_space.seed(seed) + env.observation_space.seed(seed) + return env + return thunk + + +def layer_init(layer, std=np.sqrt(2), bias_const=0.0): + torch.nn.init.orthogonal_(layer.weight, std) + torch.nn.init.constant_(layer.bias, bias_const) + return layer + + +class Agent(nn.Module): + def __init__(self, e): + super(Agent, self).__init__() + self.network = nn.Sequential( + layer_init(nn.Conv2d(4, 32, 8, stride=4)), + nn.ReLU(), + layer_init(nn.Conv2d(32, 64, 4, stride=2)), + nn.ReLU(), + layer_init(nn.Conv2d(64, 64, 3, stride=1)), + nn.ReLU(), + nn.Flatten(), + layer_init(nn.Linear(64 * 7 * 7, 512)), + nn.ReLU(), + ) + self.actor = layer_init(nn.Linear(512, e.single_action_space.n), std=0.01) + self.critic = layer_init(nn.Linear(512, 1), std=1) + + def get_value(self, x): + return self.critic(self.network(x / 255.0)) + + def get_action_and_value(self, x, a=None, show_all=False): + hidden = self.network(x / 255.0) + log = self.actor(hidden) + p = Categorical(logits=log) + if a is None: + a = p.sample() + if show_all: + return a, p.log_prob(a), p.entropy(), self.critic(hidden), p.probs + return a, p.log_prob(a), p.entropy(), self.critic(hidden) + + +def main(env_id, seed): + args = get_args() + args.gym_id = env_id + args.seed = seed + run_name = ( + 'ppo' + + '_epoch_' + str(args.update_epochs) + + '_seed_' + str(args.seed) + ) + + # Save training logs + path_string = str(args.gym_id).split('NoFrameskip')[0] + '/' + run_name + writer = SummaryWriter(path_string) + writer.add_text( + 'Hyperparameter', + '|param|value|\n|-|-|\n%s' % ('\n'.join([f'|{key}|{value}|' for key, value in vars(args).items()])), + ) + + # Random seed + random.seed(args.seed) + np.random.seed(args.seed) + torch.manual_seed(args.seed) + + # Initialize environments + device = torch.device('cuda' if torch.cuda.is_available() and args.use_cuda else 'cpu') + envs = gym.vector.SyncVectorEnv( + [make_env(args.gym_id, args.seed + i) for i in range(args.num_envs)] + ) + assert isinstance(envs.single_action_space, gym.spaces.Discrete), 'only discrete action space is supported' + agent = Agent(envs).to(device) + optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate, eps=1e-5) + + # Initialize buffer + obs = torch.zeros((args.num_steps, args.num_envs) + envs.single_observation_space.shape).to(device) + actions = torch.zeros((args.num_steps, args.num_envs) + envs.single_action_space.shape).to(device) + probs = torch.zeros((args.num_steps, args.num_envs, envs.single_action_space.n)).to(device) + log_probs = torch.zeros((args.num_steps, args.num_envs)).to(device) + rewards = torch.zeros((args.num_steps, args.num_envs)).to(device) + dones = torch.zeros((args.num_steps, args.num_envs)).to(device) + values = torch.zeros((args.num_steps, args.num_envs)).to(device) + + # Data collection + global_step = 0 + start_time = time.time() + next_obs = torch.Tensor(envs.reset()).to(device) + next_done = torch.zeros(args.num_envs).to(device) + num_updates = int(args.total_steps // args.batch_size) + + for update in tqdm(range(1, num_updates + 1)): + + # Linear decay of learning rate + if args.lr_decay: + frac = 1.0 - (update - 1.0) / num_updates + lr_now = frac * args.learning_rate + optimizer.param_groups[0]['lr'] = lr_now + + for step in range(0, args.num_steps): + global_step += 1 * args.num_envs + obs[step] = next_obs + dones[step] = next_done + + # Compute the logarithm of the action probability output by the old policy network + with torch.no_grad(): + action, log_prob, _, value, prob = agent.get_action_and_value(next_obs, show_all=True) + values[step] = value.flatten() + actions[step] = action + probs[step] = prob + log_probs[step] = log_prob + + # Update the environments + next_obs, reward, done, info = envs.step(action.cpu().numpy()) + rewards[step] = torch.tensor(reward).to(device).view(-1) + next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(done).to(device) + + for item in info: + if 'episode' in item.keys(): + writer.add_scalar('charts/episodic_return', item['episode']['r'], global_step) + break + + # Use GAE (Generalized Advantage Estimation) technique to estimate the advantage function + with torch.no_grad(): + next_value = agent.get_value(next_obs).reshape(1, -1) + if args.use_gae: + advantages = torch.zeros_like(rewards).to(device) + last_gae_lam = 0 + for t in reversed(range(args.num_steps)): + if t == args.num_steps - 1: + next_non_terminal = 1.0 - next_done + next_values = next_value + else: + next_non_terminal = 1.0 - dones[t + 1] + next_values = values[t + 1] + delta = rewards[t] + args.gamma * next_values * next_non_terminal - values[t] + advantages[t] = last_gae_lam = ( + delta + args.gamma * args.gae_lambda * next_non_terminal * last_gae_lam + ) + returns = advantages + values + else: + returns = torch.zeros_like(rewards).to(device) + for t in reversed(range(args.num_steps)): + if t == args.num_steps - 1: + next_non_terminal = 1.0 - next_done + next_return = next_value + else: + next_non_terminal = 1.0 - dones[t + 1] + next_return = returns[t + 1] + returns[t] = rewards[t] + args.gamma * next_non_terminal * next_return + advantages = returns - values + + # ---------------------- We have collected enough data, now let's start training ---------------------- # + # Flatten each batch + b_obs = obs.reshape((-1,) + envs.single_observation_space.shape) + b_probs = probs.reshape((-1, envs.single_action_space.n)) + b_log_probs = log_probs.reshape(-1) + b_actions = actions.reshape((-1,) + envs.single_action_space.shape) + b_advantages = advantages.reshape(-1) + b_returns = returns.reshape(-1) + b_values = values.reshape(-1) + + # Update the policy network and value network + b_index = np.arange(args.batch_size) + for epoch in range(1, args.update_epochs + 1): + np.random.shuffle(b_index) + for start in range(0, args.batch_size, args.minibatch_size): + end = start + args.minibatch_size + mb_index = b_index[start:end] + + # The latest outputs of the policy network and value network + _, new_log_prob, entropy, new_value, new_probs = ( + agent.get_action_and_value(b_obs[mb_index], b_actions.long()[mb_index], show_all=True) + ) + + # Compute KL divergence + d = torch.sum( + b_probs[mb_index] * torch.log((b_probs[mb_index] + 1e-12) / (new_probs + 1e-12)), 1 + ) + writer.add_scalar('charts/average_kld', d.mean(), global_step) + writer.add_scalar('others/min_kld', d.min(), global_step) + writer.add_scalar('others/max_kld', d.max(), global_step) + log_ratio = new_log_prob - b_log_probs[mb_index] + ratio = log_ratio.exp() + + # Advantage normalization + mb_advantages = b_advantages[mb_index] + if args.norm_adv: + mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-12) + + # Policy loss + pg_loss1 = -mb_advantages * ratio + pg_loss2 = -mb_advantages * torch.clamp(ratio, 1 - args.clip_epsilon, 1 + args.clip_epsilon) + pg_loss = torch.max(pg_loss1, pg_loss2).mean() + + # Value loss + new_value = new_value.view(-1) + if args.clip_value_loss: + v_loss_un_clipped = (new_value - b_returns[mb_index]) ** 2 + v_clipped = b_values[mb_index] + torch.clamp( + new_value - b_values[mb_index], + -args.clip_epsilon, + args.clip_epsilon, + ) + v_loss_clipped = (v_clipped - b_returns[mb_index]) ** 2 + v_loss_max = torch.max(v_loss_un_clipped, v_loss_clipped) + v_loss = 0.5 * v_loss_max.mean() + else: + v_loss = 0.5 * ((new_value - b_returns[mb_index]) ** 2).mean() + + # Policy entropy + entropy_loss = entropy.mean() + + # Total loss + loss = pg_loss + v_loss * args.c_1 - entropy_loss * args.c_2 + + # Save the data during the training process + writer.add_scalar('losses/value_loss', v_loss.item(), global_step) + writer.add_scalar('losses/policy_loss', pg_loss.item(), global_step) + writer.add_scalar('losses/entropy', entropy_loss.item(), global_step) + writer.add_scalar('losses/delta', torch.abs(ratio - 1).mean().item(), global_step) + + # Update network parameters + optimizer.zero_grad() + loss.backward() + nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm) + optimizer.step() + + y_pre, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy() + var_y = np.var(y_true) + explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pre) / var_y + + # Save the data during the training process + writer.add_scalar('charts/learning_rate', optimizer.param_groups[0]['lr'], global_step) + writer.add_scalar('others/explained_variance', explained_var, global_step) + writer.add_scalar('charts/SPS', int(global_step / (time.time() - start_time)), global_step) + + envs.close() + writer.close() + + +def run(): + for env_id in ['Breakout']: + for seed in [1, 2, 3]: + print(env_id + 'NoFrameskip-v4', 'seed:', seed) + main(env_id + 'NoFrameskip-v4', seed) + + +if __name__ == '__main__': + run() diff --git a/v4/spo.py b/v4/spo.py new file mode 100644 index 0000000..c2ce712 --- /dev/null +++ b/v4/spo.py @@ -0,0 +1,325 @@ +import argparse +import os +import random +import time + +import gym +import numpy as np +import torch +import torch.nn as nn +import torch.optim as optim +from stable_baselines3.common.atari_wrappers import ( + ClipRewardEnv, + EpisodicLifeEnv, + FireResetEnv, + MaxAndSkipEnv, + NoopResetEnv +) +from torch.distributions.categorical import Categorical +from torch.utils.tensorboard import SummaryWriter +from tqdm import tqdm + + +def get_args(): + parser = argparse.ArgumentParser() + parser.add_argument('--exp_name', type=str, default=os.path.basename(__file__).rstrip('.py')) + parser.add_argument('--gym_id', type=str, default='BreakoutNoFrameskip-v4') + parser.add_argument('--learning_rate', type=float, default=2.5e-4) + parser.add_argument('--seed', type=int, default=1) + parser.add_argument('--total_steps', type=int, default=int(1e7)) + parser.add_argument('--use_cuda', type=bool, default=True) + parser.add_argument('--num_envs', type=int, default=8) + parser.add_argument('--num_steps', type=int, default=128) + parser.add_argument('--lr_decay', type=bool, default=True) + parser.add_argument('--use_gae', type=bool, default=True) + parser.add_argument('--gae_lambda', type=float, default=0.95) + parser.add_argument('--gamma', type=float, default=0.99) + parser.add_argument('--num_mini_batches', type=int, default=4) + parser.add_argument('--update_epochs', type=int, default=8) + parser.add_argument('--norm_adv', type=bool, default=True) + parser.add_argument('--clip_value_loss', type=bool, default=True) + parser.add_argument('--c_1', type=float, default=1.0) + parser.add_argument('--c_2', type=float, default=0.01) + parser.add_argument('--max_grad_norm', type=float, default=0.5) + parser.add_argument('--kld_max', type=float, default=0.02) + a = parser.parse_args() + a.batch_size = int(a.num_envs * a.num_steps) + a.minibatch_size = int(a.batch_size // a.num_mini_batches) + return a + + +def make_env(gym_id, seed): + def thunk(): + env = gym.make(gym_id) + env = gym.wrappers.RecordEpisodeStatistics(env) + env = NoopResetEnv(env, noop_max=30) + env = MaxAndSkipEnv(env, skip=4) + env = EpisodicLifeEnv(env) + if 'FIRE' in env.unwrapped.get_action_meanings(): + env = FireResetEnv(env) + env = ClipRewardEnv(env) + env = gym.wrappers.ResizeObservation(env, (84, 84)) + env = gym.wrappers.GrayScaleObservation(env) + env = gym.wrappers.FrameStack(env, 4) + env.seed(seed) + env.action_space.seed(seed) + env.observation_space.seed(seed) + return env + return thunk + + +def layer_init(layer, std=np.sqrt(2), bias_const=0.0): + torch.nn.init.orthogonal_(layer.weight, std) + torch.nn.init.constant_(layer.bias, bias_const) + return layer + + +class Agent(nn.Module): + def __init__(self, e): + super(Agent, self).__init__() + self.network = nn.Sequential( + layer_init(nn.Conv2d(4, 32, 8, stride=4)), + nn.ReLU(), + layer_init(nn.Conv2d(32, 64, 4, stride=2)), + nn.ReLU(), + layer_init(nn.Conv2d(64, 64, 3, stride=1)), + nn.ReLU(), + nn.Flatten(), + layer_init(nn.Linear(64 * 7 * 7, 512)), + nn.ReLU(), + ) + self.actor = layer_init(nn.Linear(512, e.single_action_space.n), std=0.01) + self.critic = layer_init(nn.Linear(512, 1), std=1) + + def get_value(self, x): + return self.critic(self.network(x / 255.0)) + + def get_action_and_value(self, x, a=None, show_all=False): + hidden = self.network(x / 255.0) + log = self.actor(hidden) + p = Categorical(logits=log) + if a is None: + a = p.sample() + if show_all: + return a, p.log_prob(a), p.entropy(), self.critic(hidden), p.probs + return a, p.log_prob(a), p.entropy(), self.critic(hidden) + + +def main(env_id, seed): + args = get_args() + args.gym_id = env_id + args.seed = seed + run_name = ( + 'spo_' + str(args.kld_max) + + '_epoch_' + str(args.update_epochs) + + '_seed_' + str(args.seed) + ) + + # Save training logs + path_string = str(args.gym_id).split('NoFrameskip')[0] + '/' + run_name + writer = SummaryWriter(path_string) + writer.add_text( + 'Hyperparameter', + '|param|value|\n|-|-|\n%s' % ('\n'.join([f'|{key}|{value}|' for key, value in vars(args).items()])), + ) + + # Random seed + random.seed(args.seed) + np.random.seed(args.seed) + torch.manual_seed(args.seed) + + # Initialize environments + device = torch.device('cuda' if torch.cuda.is_available() and args.use_cuda else 'cpu') + envs = gym.vector.SyncVectorEnv( + [make_env(args.gym_id, args.seed + i) for i in range(args.num_envs)] + ) + assert isinstance(envs.single_action_space, gym.spaces.Discrete), 'only discrete action space is supported' + agent = Agent(envs).to(device) + optimizer = optim.Adam(agent.parameters(), lr=args.learning_rate, eps=1e-5) + + # Initialize buffer + obs = torch.zeros((args.num_steps, args.num_envs) + envs.single_observation_space.shape).to(device) + actions = torch.zeros((args.num_steps, args.num_envs) + envs.single_action_space.shape).to(device) + probs = torch.zeros((args.num_steps, args.num_envs, envs.single_action_space.n)).to(device) + log_probs = torch.zeros((args.num_steps, args.num_envs)).to(device) + rewards = torch.zeros((args.num_steps, args.num_envs)).to(device) + dones = torch.zeros((args.num_steps, args.num_envs)).to(device) + values = torch.zeros((args.num_steps, args.num_envs)).to(device) + + # Data collection + global_step = 0 + start_time = time.time() + next_obs = torch.Tensor(envs.reset()).to(device) + next_done = torch.zeros(args.num_envs).to(device) + num_updates = int(args.total_steps // args.batch_size) + + for update in tqdm(range(1, num_updates + 1)): + + # Linear decay of learning rate + if args.lr_decay: + frac = 1.0 - (update - 1.0) / num_updates + lr_now = frac * args.learning_rate + optimizer.param_groups[0]['lr'] = lr_now + + for step in range(0, args.num_steps): + global_step += 1 * args.num_envs + obs[step] = next_obs + dones[step] = next_done + + # Compute the logarithm of the action probability output by the old policy network + with torch.no_grad(): + action, log_prob, _, value, prob = agent.get_action_and_value(next_obs, show_all=True) + values[step] = value.flatten() + actions[step] = action + probs[step] = prob + log_probs[step] = log_prob + + # Update the environments + next_obs, reward, done, info = envs.step(action.cpu().numpy()) + rewards[step] = torch.tensor(reward).to(device).view(-1) + next_obs, next_done = torch.Tensor(next_obs).to(device), torch.Tensor(done).to(device) + + for item in info: + if 'episode' in item.keys(): + writer.add_scalar('charts/episodic_return', item['episode']['r'], global_step) + break + + # Use GAE (Generalized Advantage Estimation) technique to estimate the advantage function + with torch.no_grad(): + next_value = agent.get_value(next_obs).reshape(1, -1) + if args.use_gae: + advantages = torch.zeros_like(rewards).to(device) + last_gae_lam = 0 + for t in reversed(range(args.num_steps)): + if t == args.num_steps - 1: + next_non_terminal = 1.0 - next_done + next_values = next_value + else: + next_non_terminal = 1.0 - dones[t + 1] + next_values = values[t + 1] + delta = rewards[t] + args.gamma * next_values * next_non_terminal - values[t] + advantages[t] = last_gae_lam = ( + delta + args.gamma * args.gae_lambda * next_non_terminal * last_gae_lam + ) + returns = advantages + values + else: + returns = torch.zeros_like(rewards).to(device) + for t in reversed(range(args.num_steps)): + if t == args.num_steps - 1: + next_non_terminal = 1.0 - next_done + next_return = next_value + else: + next_non_terminal = 1.0 - dones[t + 1] + next_return = returns[t + 1] + returns[t] = rewards[t] + args.gamma * next_non_terminal * next_return + advantages = returns - values + + # ---------------------- We have collected enough data, now let's start training ---------------------- # + # Flatten each batch + b_obs = obs.reshape((-1,) + envs.single_observation_space.shape) + b_probs = probs.reshape((-1, envs.single_action_space.n)) + b_log_probs = log_probs.reshape(-1) + b_actions = actions.reshape((-1,) + envs.single_action_space.shape) + b_advantages = advantages.reshape(-1) + b_returns = returns.reshape(-1) + b_values = values.reshape(-1) + + # Update the policy network and value network + b_index = np.arange(args.batch_size) + for epoch in range(1, args.update_epochs + 1): + np.random.shuffle(b_index) + t = 0 + for start in range(0, args.batch_size, args.minibatch_size): + t += 1 + end = start + args.minibatch_size + mb_index = b_index[start:end] + + # The latest outputs of the policy network and value network + _, new_log_prob, entropy, new_value, new_probs = ( + agent.get_action_and_value(b_obs[mb_index], b_actions.long()[mb_index], show_all=True) + ) + + # Compute KL divergence + d = torch.sum( + b_probs[mb_index] * torch.log((b_probs[mb_index] + 1e-12) / (new_probs + 1e-12)), 1 + ) + writer.add_scalar('charts/average_kld', d.mean(), global_step) + writer.add_scalar('others/min_kld', d.min(), global_step) + writer.add_scalar('others/max_kld', d.max(), global_step) + log_ratio = new_log_prob - b_log_probs[mb_index] + ratios = log_ratio.exp() + + # Advantage normalization + mb_advantages = b_advantages[mb_index] + if args.norm_adv: + mb_advantages = (mb_advantages - mb_advantages.mean()) / (mb_advantages.std() + 1e-12) + + # Policy loss (main code of SPO) + new_value = new_value.view(-1) + if epoch == 1 and t == 1: + pg_loss = (-mb_advantages * ratios).mean() + else: + d_clip = torch.clamp(input=d, min=0, max=args.kld_max) + # d_clip / d + ratio = d_clip / (d + 1e-12) + # sign_a + sign_a = torch.sign(mb_advantages) + # (d_clip / d + sign_a - 1) * sign_a + result = (ratio + sign_a - 1) * sign_a + pg_loss = (-mb_advantages * ratios * result).mean() + + # Value loss + new_value = new_value.view(-1) + if args.clip_value_loss: + v_loss_un_clipped = (new_value - b_returns[mb_index]) ** 2 + v_clipped = b_values[mb_index] + torch.clamp( + new_value - b_values[mb_index], + -0.2, + 0.2, + ) + v_loss_clipped = (v_clipped - b_returns[mb_index]) ** 2 + v_loss_max = torch.max(v_loss_un_clipped, v_loss_clipped) + v_loss = 0.5 * v_loss_max.mean() + else: + v_loss = 0.5 * ((new_value - b_returns[mb_index]) ** 2).mean() + + # Policy entropy + entropy_loss = entropy.mean() + + # Total loss + loss = pg_loss + v_loss * args.c_1 - entropy_loss * args.c_2 + + # Save the data during the training process + writer.add_scalar('losses/value_loss', v_loss.item(), global_step) + writer.add_scalar('losses/policy_loss', pg_loss.item(), global_step) + writer.add_scalar('losses/entropy', entropy_loss.item(), global_step) + writer.add_scalar('losses/delta', torch.abs(ratios - 1).mean().item(), global_step) + + # Update network parameters + optimizer.zero_grad() + loss.backward() + nn.utils.clip_grad_norm_(agent.parameters(), args.max_grad_norm) + optimizer.step() + + y_pre, y_true = b_values.cpu().numpy(), b_returns.cpu().numpy() + var_y = np.var(y_true) + explained_var = np.nan if var_y == 0 else 1 - np.var(y_true - y_pre) / var_y + + # Save the data during the training process + writer.add_scalar('charts/learning_rate', optimizer.param_groups[0]['lr'], global_step) + writer.add_scalar('others/explained_variance', explained_var, global_step) + writer.add_scalar('charts/SPS', int(global_step / (time.time() - start_time)), global_step) + + envs.close() + writer.close() + + +def run(): + for env_id in ['Breakout']: + for seed in [1, 2, 3]: + print(env_id + 'NoFrameskip-v4', 'seed:', seed) + main(env_id + 'NoFrameskip-v4', seed) + + +if __name__ == '__main__': + run()