56 lines
1.6 KiB
Python
Raw Permalink Normal View History

from collections.abc import Callable
from typing import Any
import gymnasium as gym
import numpy as np
from tianshou.env.worker import EnvWorker
class DummyEnvWorker(EnvWorker):
"""Dummy worker used in sequential vector environments."""
def __init__(self, env_fn: Callable[[], gym.Env]) -> None:
self.env = env_fn()
super().__init__(env_fn)
def get_env_attr(self, key: str) -> Any:
return getattr(self.env, key)
def set_env_attr(self, key: str, value: Any) -> None:
setattr(self.env.unwrapped, key, value)
def reset(self, **kwargs: Any) -> tuple[np.ndarray, dict]:
if "seed" in kwargs:
super().seed(kwargs["seed"])
return self.env.reset(**kwargs)
@staticmethod
def wait( # type: ignore
workers: list["DummyEnvWorker"],
wait_num: int,
timeout: float | None = None,
) -> list["DummyEnvWorker"]:
# Sequential EnvWorker objects are always ready
return workers
def send(self, action: np.ndarray | None, **kwargs: Any) -> None:
if action is None:
self.result = self.env.reset(**kwargs)
else:
self.result = self.env.step(action) # type: ignore
def seed(self, seed: int | None = None) -> list[int] | None:
super().seed(seed)
try:
return self.env.seed(seed) # type: ignore
except (AttributeError, NotImplementedError):
self.env.reset(seed=seed)
return [seed] # type: ignore
def render(self, **kwargs: Any) -> Any:
return self.env.render(**kwargs)
def close_env(self) -> None:
self.env.close()