Tianshou/test/pettingzoo/tic_tac_toe.py

243 lines
8.0 KiB
Python
Raw Normal View History

import argparse
import os
from copy import deepcopy
from typing import Optional, Tuple
import gym
2022-10-16 22:15:20 -07:00
import gymnasium
import numpy as np
import torch
from pettingzoo.classic import tictactoe_v3
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.env.pettingzoo_env import PettingZooEnv
from tianshou.policy import (
BasePolicy,
DQNPolicy,
MultiAgentPolicyManager,
RandomPolicy,
)
from tianshou.trainer import offpolicy_trainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import Net
def get_env():
return PettingZooEnv(tictactoe_v3.env())
def get_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=1626)
parser.add_argument('--eps-test', type=float, default=0.05)
parser.add_argument('--eps-train', type=float, default=0.1)
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument(
'--gamma', type=float, default=0.9, help='a smaller gamma favors earlier win'
)
parser.add_argument('--n-step', type=int, default=3)
parser.add_argument('--target-update-freq', type=int, default=320)
parser.add_argument('--epoch', type=int, default=50)
parser.add_argument('--step-per-epoch', type=int, default=1000)
parser.add_argument('--step-per-collect', type=int, default=10)
parser.add_argument('--update-per-step', type=float, default=0.1)
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument(
'--hidden-sizes', type=int, nargs='*', default=[128, 128, 128, 128]
)
parser.add_argument('--training-num', type=int, default=10)
parser.add_argument('--test-num', type=int, default=10)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.1)
parser.add_argument(
'--win-rate',
type=float,
default=0.6,
help='the expected winning rate: Optimal policy can get 0.7'
)
parser.add_argument(
'--watch',
default=False,
action='store_true',
help='no training, '
'watch the play of pre-trained models'
)
parser.add_argument(
'--agent-id',
type=int,
default=2,
help='the learned agent plays as the'
' agent_id-th player. Choices are 1 and 2.'
)
parser.add_argument(
'--resume-path',
type=str,
default='',
help='the path of agent pth file '
'for resuming from a pre-trained agent'
)
parser.add_argument(
'--opponent-path',
type=str,
default='',
help='the path of opponent agent pth file '
'for resuming from a pre-trained agent'
)
parser.add_argument(
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
)
return parser
def get_args() -> argparse.Namespace:
parser = get_parser()
return parser.parse_known_args()[0]
def get_agents(
args: argparse.Namespace = get_args(),
agent_learn: Optional[BasePolicy] = None,
agent_opponent: Optional[BasePolicy] = None,
optim: Optional[torch.optim.Optimizer] = None,
) -> Tuple[BasePolicy, torch.optim.Optimizer, list]:
env = get_env()
observation_space = env.observation_space['observation'] if isinstance(
2022-10-16 22:15:20 -07:00
env.observation_space, (gym.spaces.Dict, gymnasium.spaces.Dict)
) else env.observation_space
args.state_shape = observation_space.shape or observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
if agent_learn is None:
# model
net = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
device=args.device
).to(args.device)
if optim is None:
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
agent_learn = DQNPolicy(
net,
optim,
args.gamma,
args.n_step,
target_update_freq=args.target_update_freq
)
if args.resume_path:
agent_learn.load_state_dict(torch.load(args.resume_path))
if agent_opponent is None:
if args.opponent_path:
agent_opponent = deepcopy(agent_learn)
agent_opponent.load_state_dict(torch.load(args.opponent_path))
else:
agent_opponent = RandomPolicy()
if args.agent_id == 1:
agents = [agent_learn, agent_opponent]
else:
agents = [agent_opponent, agent_learn]
policy = MultiAgentPolicyManager(agents, env)
return policy, optim, env.agents
def train_agent(
args: argparse.Namespace = get_args(),
agent_learn: Optional[BasePolicy] = None,
agent_opponent: Optional[BasePolicy] = None,
optim: Optional[torch.optim.Optimizer] = None,
) -> Tuple[dict, BasePolicy]:
train_envs = DummyVectorEnv([get_env for _ in range(args.training_num)])
test_envs = DummyVectorEnv([get_env for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
policy, optim, agents = get_agents(
args, agent_learn=agent_learn, agent_opponent=agent_opponent, optim=optim
)
# collector
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
exploration_noise=True
)
test_collector = Collector(policy, test_envs, exploration_noise=True)
# policy.set_eps(1)
train_collector.collect(n_step=args.batch_size * args.training_num)
# log
log_path = os.path.join(args.logdir, 'tic_tac_toe', 'dqn')
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
logger = TensorboardLogger(writer)
def save_best_fn(policy):
if hasattr(args, 'model_save_path'):
model_save_path = args.model_save_path
else:
model_save_path = os.path.join(
args.logdir, 'tic_tac_toe', 'dqn', 'policy.pth'
)
torch.save(
policy.policies[agents[args.agent_id - 1]].state_dict(), model_save_path
)
def stop_fn(mean_rewards):
return mean_rewards >= args.win_rate
def train_fn(epoch, env_step):
policy.policies[agents[args.agent_id - 1]].set_eps(args.eps_train)
def test_fn(epoch, env_step):
policy.policies[agents[args.agent_id - 1]].set_eps(args.eps_test)
def reward_metric(rews):
return rews[:, args.agent_id - 1]
# trainer
result = offpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
args.step_per_collect,
args.test_num,
args.batch_size,
train_fn=train_fn,
test_fn=test_fn,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
update_per_step=args.update_per_step,
logger=logger,
test_in_train=False,
reward_metric=reward_metric
)
return result, policy.policies[agents[args.agent_id - 1]]
def watch(
args: argparse.Namespace = get_args(),
agent_learn: Optional[BasePolicy] = None,
agent_opponent: Optional[BasePolicy] = None,
) -> None:
env = DummyVectorEnv([get_env])
policy, optim, agents = get_agents(
args, agent_learn=agent_learn, agent_opponent=agent_opponent
)
policy.eval()
policy.policies[agents[args.agent_id - 1]].set_eps(args.eps_test)
collector = Collector(policy, env, exploration_noise=True)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews[:, args.agent_id - 1].mean()}, length: {lens.mean()}")