Tianshou/tianshou/data/collector.py

676 lines
27 KiB
Python
Raw Normal View History

2020-03-16 11:11:29 +08:00
import time
import warnings
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
from typing import Any, Callable, Dict, List, Optional, Union, cast
import gymnasium as gym
2020-03-28 15:14:41 +08:00
import numpy as np
import torch
from tianshou.data import (
Batch,
CachedReplayBuffer,
2023-08-09 19:27:18 +02:00
PrioritizedReplayBuffer,
ReplayBuffer,
ReplayBufferManager,
VectorReplayBuffer,
to_numpy,
)
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
from tianshou.data.batch import alloc_by_keys_diff
from tianshou.data.types import RolloutBatchProtocol
from tianshou.env import BaseVectorEnv, DummyVectorEnv
from tianshou.policy import BasePolicy
2020-03-12 22:20:33 +08:00
2020-03-13 17:49:22 +08:00
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
class Collector:
"""Collector enables the policy to interact with different types of envs with \
exact number of steps or episodes.
2020-04-06 19:36:59 +08:00
:param policy: an instance of the :class:`~tianshou.policy.BasePolicy` class.
2020-05-05 13:39:51 +08:00
:param env: a ``gym.Env`` environment or an instance of the
2020-04-06 19:36:59 +08:00
:class:`~tianshou.env.BaseVectorEnv` class.
:param buffer: an instance of the :class:`~tianshou.data.ReplayBuffer` class.
If set to None, it will not store the data. Default to None.
:param function preprocess_fn: a function called before the data has been added to
the buffer, see issue #42 and :ref:`preprocess_fn`. Default to None.
:param bool exploration_noise: determine whether the action needs to be modified
with corresponding policy's exploration noise. If so, "policy.
exploration_noise(act, batch)" will be called automatically to add the
exploration noise into action. Default to False.
The "preprocess_fn" is a function called before the data has been added to the
2021-07-05 09:50:39 +08:00
buffer with batch format. It will receive only "obs" and "env_id" when the
collector resets the environment, and will receive the keys "obs_next", "rew",
"terminated", "truncated, "info", "policy" and "env_id" in a normal env step.
Alternatively, it may also accept the keys "obs_next", "rew", "done", "info",
"policy" and "env_id".
It returns either a dict or a :class:`~tianshou.data.Batch` with the modified
keys and values. Examples are in "test/base/test_collector.py".
.. note::
Please make sure the given environment has a time limitation if using n_episode
collect option.
.. note::
In past versions of Tianshou, the replay buffer that was passed to `__init__`
was automatically reset. This is not done in the current implementation.
"""
2020-03-13 17:49:22 +08:00
def __init__(
self,
policy: BasePolicy,
env: Union[gym.Env, BaseVectorEnv],
buffer: Optional[ReplayBuffer] = None,
preprocess_fn: Optional[Callable[..., Batch]] = None,
exploration_noise: bool = False,
) -> None:
2020-03-12 22:20:33 +08:00
super().__init__()
if isinstance(env, gym.Env) and not hasattr(env, "__len__"):
warnings.warn("Single environment detected, wrap to DummyVectorEnv.")
self.env = DummyVectorEnv([lambda: env]) # type: ignore
else:
self.env = env # type: ignore
self.env_num = len(self.env)
self.exploration_noise = exploration_noise
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
self.buffer: ReplayBuffer
self._assign_buffer(buffer)
2020-03-12 22:20:33 +08:00
self.policy = policy
2020-05-05 13:39:51 +08:00
self.preprocess_fn = preprocess_fn
self._action_space = self.env.action_space
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
self.data: RolloutBatchProtocol
# avoid creating attribute outside __init__
self.reset(False)
2020-04-13 19:37:27 +08:00
def _assign_buffer(self, buffer: Optional[ReplayBuffer]) -> None:
"""Check if the buffer matches the constraint."""
if buffer is None:
buffer = VectorReplayBuffer(self.env_num, self.env_num)
elif isinstance(buffer, ReplayBufferManager):
assert buffer.buffer_num >= self.env_num
if isinstance(buffer, CachedReplayBuffer):
assert buffer.cached_buffer_num >= self.env_num
else: # ReplayBuffer or PrioritizedReplayBuffer
assert buffer.maxsize > 0
if self.env_num > 1:
2023-08-09 19:27:18 +02:00
if isinstance(buffer, ReplayBuffer):
buffer_type = "ReplayBuffer"
vector_type = "VectorReplayBuffer"
2023-08-09 19:27:18 +02:00
if isinstance(buffer, PrioritizedReplayBuffer):
buffer_type = "PrioritizedReplayBuffer"
vector_type = "PrioritizedVectorReplayBuffer"
raise TypeError(
f"Cannot use {buffer_type}(size={buffer.maxsize}, ...) to collect "
f"{self.env_num} envs,\n\tplease use {vector_type}(total_size="
f"{buffer.maxsize}, buffer_num={self.env_num}, ...) instead."
)
self.buffer = buffer
def reset(
self,
reset_buffer: bool = True,
gym_reset_kwargs: Optional[Dict[str, Any]] = None,
) -> None:
"""Reset the environment, statistics, current data and possibly replay memory.
:param bool reset_buffer: if true, reset the replay buffer that is attached
to the collector.
:param gym_reset_kwargs: extra keyword arguments to pass into the environment's
reset function. Defaults to None (extra keyword arguments)
"""
# use empty Batch for "state" so that self.data supports slicing
# convert empty Batch to None when passing data to policy
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
data = Batch(
obs={},
act={},
rew={},
terminated={},
truncated={},
done={},
obs_next={},
info={},
policy={}
)
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
self.data = cast(RolloutBatchProtocol, data)
self.reset_env(gym_reset_kwargs)
if reset_buffer:
self.reset_buffer()
self.reset_stat()
2020-03-12 22:20:33 +08:00
def reset_stat(self) -> None:
"""Reset the statistic variables."""
self.collect_step, self.collect_episode, self.collect_time = 0, 0, 0.0
def reset_buffer(self, keep_statistics: bool = False) -> None:
"""Reset the data buffer."""
self.buffer.reset(keep_statistics=keep_statistics)
2020-03-27 09:04:29 +08:00
def reset_env(self, gym_reset_kwargs: Optional[Dict[str, Any]] = None) -> None:
"""Reset all of the environments."""
gym_reset_kwargs = gym_reset_kwargs if gym_reset_kwargs else {}
obs, info = self.env.reset(**gym_reset_kwargs)
if self.preprocess_fn:
processed_data = self.preprocess_fn(
obs=obs, info=info, env_id=np.arange(self.env_num)
)
obs = processed_data.get("obs", obs)
info = processed_data.get("info", info)
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
self.data.info = info # type: ignore
self.data.obs = obs
2020-03-14 21:48:31 +08:00
2020-05-12 11:31:47 +08:00
def _reset_state(self, id: Union[int, List[int]]) -> None:
"""Reset the hidden state: self.data.state[id]."""
if hasattr(self.data.policy, "hidden_state"):
state = self.data.policy.hidden_state # it is a reference
if isinstance(state, torch.Tensor):
state[id].zero_()
elif isinstance(state, np.ndarray):
state[id] = None if state.dtype == object else 0
elif isinstance(state, Batch):
state.empty_(id)
2020-04-08 21:13:15 +08:00
def _reset_env_with_ids(
self,
local_ids: Union[List[int], np.ndarray],
global_ids: Union[List[int], np.ndarray],
gym_reset_kwargs: Optional[Dict[str, Any]] = None,
) -> None:
gym_reset_kwargs = gym_reset_kwargs if gym_reset_kwargs else {}
obs_reset, info = self.env.reset(global_ids, **gym_reset_kwargs)
if self.preprocess_fn:
processed_data = self.preprocess_fn(
obs=obs_reset, info=info, env_id=global_ids
)
obs_reset = processed_data.get("obs", obs_reset)
info = processed_data.get("info", info)
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
self.data.info[local_ids] = info # type: ignore
self.data.obs_next[local_ids] = obs_reset
def collect(
self,
n_step: Optional[int] = None,
n_episode: Optional[int] = None,
random: bool = False,
render: Optional[float] = None,
no_grad: bool = True,
gym_reset_kwargs: Optional[Dict[str, Any]] = None,
) -> Dict[str, Any]:
"""Collect a specified number of step or episode.
To ensure unbiased sampling result with n_episode option, this function will
first collect ``n_episode - env_num`` episodes, then for the last ``env_num``
episodes, they will be collected evenly from each env.
2020-04-06 19:36:59 +08:00
:param int n_step: how many steps you want to collect.
:param int n_episode: how many episodes you want to collect.
:param bool random: whether to use random policy for collecting data. Default
to False.
:param float render: the sleep time between rendering consecutive frames.
Default to None (no rendering).
:param bool no_grad: whether to retain gradient in policy.forward(). Default to
True (no gradient retaining).
:param gym_reset_kwargs: extra keyword arguments to pass into the environment's
reset function. Defaults to None (extra keyword arguments)
.. note::
One and only one collection number specification is permitted, either
``n_step`` or ``n_episode``.
:return: A dict including the following keys
* ``n/ep`` collected number of episodes.
* ``n/st`` collected number of steps.
* ``rews`` array of episode reward over collected episodes.
* ``lens`` array of episode length over collected episodes.
* ``idxs`` array of episode start index in buffer over collected episodes.
* ``rew`` mean of episodic rewards.
* ``len`` mean of episodic lengths.
* ``rew_std`` standard error of episodic rewards.
* ``len_std`` standard error of episodic lengths.
"""
assert not self.env.is_async, "Please use AsyncCollector if using async venv."
if n_step is not None:
assert n_episode is None, (
f"Only one of n_step or n_episode is allowed in Collector."
f"collect, got n_step={n_step}, n_episode={n_episode}."
)
assert n_step > 0
if not n_step % self.env_num == 0:
warnings.warn(
f"n_step={n_step} is not a multiple of #env ({self.env_num}), "
"which may cause extra transitions collected into the buffer."
)
ready_env_ids = np.arange(self.env_num)
elif n_episode is not None:
assert n_episode > 0
ready_env_ids = np.arange(min(self.env_num, n_episode))
self.data = self.data[:min(self.env_num, n_episode)]
else:
raise TypeError(
"Please specify at least one (either n_step or n_episode) "
"in AsyncCollector.collect()."
)
start_time = time.time()
step_count = 0
episode_count = 0
episode_rews = []
episode_lens = []
episode_start_indices = []
2020-03-12 22:20:33 +08:00
while True:
assert len(self.data) == len(ready_env_ids)
# restore the state: if the last state is None, it won't store
last_state = self.data.policy.pop("hidden_state", None)
# get the next action
if random:
try:
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
act_sample = [self._action_space[i].sample() for i in ready_env_ids]
except TypeError: # envpool's action space is not for per-env
act_sample = [self._action_space.sample() for _ in ready_env_ids]
act_sample = self.policy.map_action_inverse(act_sample) # type: ignore
self.data.update(act=act_sample)
else:
if no_grad:
with torch.no_grad(): # faster than retain_grad version
# self.data.obs will be used by agent to get result
result = self.policy(self.data, last_state)
else:
result = self.policy(self.data, last_state)
# update state / act / policy into self.data
policy = result.get("policy", Batch())
assert isinstance(policy, Batch)
state = result.get("state", None)
if state is not None:
policy.hidden_state = state # save state into buffer
act = to_numpy(result.act)
if self.exploration_noise:
act = self.policy.exploration_noise(act, self.data)
self.data.update(policy=policy, act=act)
# get bounded and remapped actions first (not saved into buffer)
action_remap = self.policy.map_action(self.data.act)
# step in env
obs_next, rew, terminated, truncated, info = self.env.step(
action_remap, # type: ignore
ready_env_ids
)
done = np.logical_or(terminated, truncated)
self.data.update(
obs_next=obs_next,
rew=rew,
terminated=terminated,
truncated=truncated,
done=done,
info=info
)
if self.preprocess_fn:
self.data.update(
self.preprocess_fn(
obs_next=self.data.obs_next,
rew=self.data.rew,
done=self.data.done,
info=self.data.info,
policy=self.data.policy,
env_id=ready_env_ids,
act=self.data.act,
)
)
2020-05-05 13:39:51 +08:00
if render:
self.env.render()
if render > 0 and not np.isclose(render, 0):
time.sleep(render)
# add data into the buffer
ptr, ep_rew, ep_len, ep_idx = self.buffer.add(
self.data, buffer_ids=ready_env_ids
)
# collect statistics
step_count += len(ready_env_ids)
if np.any(done):
env_ind_local = np.where(done)[0]
env_ind_global = ready_env_ids[env_ind_local]
episode_count += len(env_ind_local)
episode_lens.append(ep_len[env_ind_local])
episode_rews.append(ep_rew[env_ind_local])
episode_start_indices.append(ep_idx[env_ind_local])
# now we copy obs_next to obs, but since there might be
# finished episodes, we have to reset finished envs first.
self._reset_env_with_ids(
env_ind_local, env_ind_global, gym_reset_kwargs
)
for i in env_ind_local:
self._reset_state(i)
# remove surplus env id from ready_env_ids
# to avoid bias in selecting environments
if n_episode:
surplus_env_num = len(ready_env_ids) - (n_episode - episode_count)
if surplus_env_num > 0:
mask = np.ones_like(ready_env_ids, dtype=bool)
mask[env_ind_local[:surplus_env_num]] = False
ready_env_ids = ready_env_ids[mask]
self.data = self.data[mask]
self.data.obs = self.data.obs_next
if (n_step and step_count >= n_step) or \
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
(n_episode and episode_count >= n_episode):
break
# generate statistics
self.collect_step += step_count
self.collect_episode += episode_count
self.collect_time += max(time.time() - start_time, 1e-9)
if n_episode:
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
data = Batch(
obs={},
act={},
rew={},
terminated={},
truncated={},
done={},
obs_next={},
info={},
policy={}
)
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
self.data = cast(RolloutBatchProtocol, data)
self.reset_env()
if episode_count > 0:
rews, lens, idxs = list(
map(
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
np.concatenate, [episode_rews, episode_lens, episode_start_indices]
)
)
rew_mean, rew_std = rews.mean(), rews.std()
len_mean, len_std = lens.mean(), lens.std()
else:
rews, lens, idxs = np.array([]), np.array([], int), np.array([], int)
rew_mean = rew_std = len_mean = len_std = 0
2020-03-16 15:04:58 +08:00
return {
"n/ep": episode_count,
"n/st": step_count,
"rews": rews,
"lens": lens,
"idxs": idxs,
"rew": rew_mean,
"len": len_mean,
"rew_std": rew_std,
"len_std": len_std,
2020-03-16 15:04:58 +08:00
}
2020-03-12 22:20:33 +08:00
class AsyncCollector(Collector):
"""Async Collector handles async vector environment.
The arguments are exactly the same as :class:`~tianshou.data.Collector`, please
refer to :class:`~tianshou.data.Collector` for more detailed explanation.
"""
def __init__(
self,
policy: BasePolicy,
env: BaseVectorEnv,
buffer: Optional[ReplayBuffer] = None,
preprocess_fn: Optional[Callable[..., Batch]] = None,
exploration_noise: bool = False,
) -> None:
# assert env.is_async
warnings.warn("Using async setting may collect extra transitions into buffer.")
super().__init__(
policy,
env,
buffer,
preprocess_fn,
exploration_noise,
)
def reset_env(self, gym_reset_kwargs: Optional[Dict[str, Any]] = None) -> None:
super().reset_env(gym_reset_kwargs)
self._ready_env_ids = np.arange(self.env_num)
def collect(
self,
n_step: Optional[int] = None,
n_episode: Optional[int] = None,
random: bool = False,
render: Optional[float] = None,
no_grad: bool = True,
gym_reset_kwargs: Optional[Dict[str, Any]] = None,
) -> Dict[str, Any]:
"""Collect a specified number of step or episode with async env setting.
This function doesn't collect exactly n_step or n_episode number of
transitions. Instead, in order to support async setting, it may collect more
than given n_step or n_episode transitions and save into buffer.
:param int n_step: how many steps you want to collect.
:param int n_episode: how many episodes you want to collect.
:param bool random: whether to use random policy for collecting data. Default
to False.
:param float render: the sleep time between rendering consecutive frames.
Default to None (no rendering).
:param bool no_grad: whether to retain gradient in policy.forward(). Default to
True (no gradient retaining).
:param gym_reset_kwargs: extra keyword arguments to pass into the environment's
reset function. Defaults to None (extra keyword arguments)
.. note::
One and only one collection number specification is permitted, either
``n_step`` or ``n_episode``.
:return: A dict including the following keys
* ``n/ep`` collected number of episodes.
* ``n/st`` collected number of steps.
* ``rews`` array of episode reward over collected episodes.
* ``lens`` array of episode length over collected episodes.
* ``idxs`` array of episode start index in buffer over collected episodes.
* ``rew`` mean of episodic rewards.
* ``len`` mean of episodic lengths.
* ``rew_std`` standard error of episodic rewards.
* ``len_std`` standard error of episodic lengths.
"""
# collect at least n_step or n_episode
if n_step is not None:
assert n_episode is None, (
"Only one of n_step or n_episode is allowed in Collector."
f"collect, got n_step={n_step}, n_episode={n_episode}."
)
assert n_step > 0
elif n_episode is not None:
assert n_episode > 0
else:
raise TypeError(
"Please specify at least one (either n_step or n_episode) "
"in AsyncCollector.collect()."
)
ready_env_ids = self._ready_env_ids
start_time = time.time()
step_count = 0
episode_count = 0
episode_rews = []
episode_lens = []
episode_start_indices = []
while True:
whole_data = self.data
self.data = self.data[ready_env_ids]
assert len(whole_data) == self.env_num # major difference
# restore the state: if the last state is None, it won't store
last_state = self.data.policy.pop("hidden_state", None)
# get the next action
if random:
try:
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
act_sample = [self._action_space[i].sample() for i in ready_env_ids]
except TypeError: # envpool's action space is not for per-env
act_sample = [self._action_space.sample() for _ in ready_env_ids]
act_sample = self.policy.map_action_inverse(act_sample) # type: ignore
self.data.update(act=act_sample)
else:
if no_grad:
with torch.no_grad(): # faster than retain_grad version
# self.data.obs will be used by agent to get result
result = self.policy(self.data, last_state)
else:
result = self.policy(self.data, last_state)
# update state / act / policy into self.data
policy = result.get("policy", Batch())
assert isinstance(policy, Batch)
state = result.get("state", None)
if state is not None:
policy.hidden_state = state # save state into buffer
act = to_numpy(result.act)
if self.exploration_noise:
act = self.policy.exploration_noise(act, self.data)
self.data.update(policy=policy, act=act)
# save act/policy before env.step
try:
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
whole_data.act[ready_env_ids] = self.data.act # type: ignore
whole_data.policy[ready_env_ids] = self.data.policy
except ValueError:
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
alloc_by_keys_diff(whole_data, self.data, self.env_num, False)
whole_data[ready_env_ids] = self.data # lots of overhead
# get bounded and remapped actions first (not saved into buffer)
action_remap = self.policy.map_action(self.data.act)
# step in env
obs_next, rew, terminated, truncated, info = self.env.step(
action_remap, # type: ignore
ready_env_ids
)
done = np.logical_or(terminated, truncated)
# change self.data here because ready_env_ids has changed
try:
ready_env_ids = info["env_id"]
except Exception:
ready_env_ids = np.array([i["env_id"] for i in info])
self.data = whole_data[ready_env_ids]
self.data.update(
obs_next=obs_next,
rew=rew,
terminated=terminated,
truncated=truncated,
info=info
)
if self.preprocess_fn:
try:
self.data.update(
self.preprocess_fn(
obs_next=self.data.obs_next,
rew=self.data.rew,
terminated=self.data.terminated,
truncated=self.data.truncated,
info=self.data.info,
env_id=ready_env_ids,
act=self.data.act,
)
)
except TypeError:
self.data.update(
self.preprocess_fn(
obs_next=self.data.obs_next,
rew=self.data.rew,
done=self.data.done,
info=self.data.info,
env_id=ready_env_ids,
act=self.data.act,
)
)
if render:
self.env.render()
if render > 0 and not np.isclose(render, 0):
time.sleep(render)
# add data into the buffer
ptr, ep_rew, ep_len, ep_idx = self.buffer.add(
self.data, buffer_ids=ready_env_ids
)
# collect statistics
step_count += len(ready_env_ids)
if np.any(done):
env_ind_local = np.where(done)[0]
env_ind_global = ready_env_ids[env_ind_local]
episode_count += len(env_ind_local)
episode_lens.append(ep_len[env_ind_local])
episode_rews.append(ep_rew[env_ind_local])
episode_start_indices.append(ep_idx[env_ind_local])
# now we copy obs_next to obs, but since there might be
# finished episodes, we have to reset finished envs first.
self._reset_env_with_ids(
env_ind_local, env_ind_global, gym_reset_kwargs
)
for i in env_ind_local:
self._reset_state(i)
try:
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
# Need to ignore types b/c according to mypy Tensors cannot be indexed
# by arrays (which they can...)
whole_data.obs[ready_env_ids] = self.data.obs_next # type: ignore
whole_data.rew[ready_env_ids] = self.data.rew
whole_data.done[ready_env_ids] = self.data.done
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
whole_data.info[ready_env_ids] = self.data.info # type: ignore
except ValueError:
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
alloc_by_keys_diff(whole_data, self.data, self.env_num, False)
self.data.obs = self.data.obs_next
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
# lots of overhead
whole_data[ready_env_ids] = self.data
self.data = whole_data
if (n_step and step_count >= n_step) or \
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
(n_episode and episode_count >= n_episode):
break
self._ready_env_ids = ready_env_ids
# generate statistics
self.collect_step += step_count
self.collect_episode += episode_count
self.collect_time += max(time.time() - start_time, 1e-9)
if episode_count > 0:
rews, lens, idxs = list(
map(
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
np.concatenate, [episode_rews, episode_lens, episode_start_indices]
)
)
rew_mean, rew_std = rews.mean(), rews.std()
len_mean, len_std = lens.mean(), lens.std()
else:
rews, lens, idxs = np.array([]), np.array([], int), np.array([], int)
rew_mean = rew_std = len_mean = len_std = 0
return {
"n/ep": episode_count,
"n/st": step_count,
"rews": rews,
"lens": lens,
"idxs": idxs,
"rew": rew_mean,
"len": len_mean,
"rew_std": rew_std,
"len_std": len_std,
}