653 lines
26 KiB
Python
Raw Normal View History

import logging
import time
from abc import ABC, abstractmethod
from collections import defaultdict, deque
from collections.abc import Callable
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
from dataclasses import asdict
import numpy as np
import tqdm
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
from tianshou.data import (
AsyncCollector,
Collector,
CollectStats,
EpochStats,
InfoStats,
ReplayBuffer,
SequenceSummaryStats,
)
from tianshou.data.collector import CollectStatsBase
from tianshou.policy import BasePolicy
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
from tianshou.policy.base import TrainingStats
from tianshou.trainer.utils import gather_info, test_episode
from tianshou.utils import (
BaseLogger,
DummyTqdm,
LazyLogger,
MovAvg,
tqdm_config,
)
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
from tianshou.utils.logging import set_numerical_fields_to_precision
log = logging.getLogger(__name__)
class BaseTrainer(ABC):
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
"""An iterator base class for trainers.
Returns an iterator that yields a 3-tuple (epoch, stats, info) of train results
on every epoch.
:param policy: an instance of the :class:`~tianshou.policy.BasePolicy` class.
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
:param batch_size: the batch size of sample data, which is going to feed in
the policy network. If None, will use the whole buffer in each gradient step.
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
:param train_collector: the collector used for training.
:param test_collector: the collector used for testing. If it's None,
then no testing will be performed.
:param buffer: the replay buffer used for off-policy algorithms or for pre-training.
If a policy overrides the ``process_buffer`` method, the replay buffer will
be pre-processed before training.
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
:param max_epoch: the maximum number of epochs for training. The training
process might be finished before reaching ``max_epoch`` if ``stop_fn``
is set.
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
:param step_per_epoch: the number of transitions collected per epoch.
:param repeat_per_collect: the number of repeat time for policy learning,
for example, set it to 2 means the policy needs to learn each given batch
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
data twice. Only used in on-policy algorithms
:param episode_per_test: the number of episodes for one policy evaluation.
:param update_per_step: only used in off-policy algorithms.
How many gradient steps to perform per step in the environment
(i.e., per sample added to the buffer).
:param step_per_collect: the number of transitions the collector would
collect before the network update, i.e., trainer will collect
"step_per_collect" transitions and do some policy network update repeatedly
in each epoch.
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
:param episode_per_collect: the number of episodes the collector would
collect before the network update, i.e., trainer will collect
"episode_per_collect" episodes and do some policy network update repeatedly
in each epoch.
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
:param train_fn: a hook called at the beginning of training in each
epoch. It can be used to perform custom additional operations, with the
signature ``f(num_epoch: int, step_idx: int) -> None``.
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
:param test_fn: a hook called at the beginning of testing in each
epoch. It can be used to perform custom additional operations, with the
signature ``f(num_epoch: int, step_idx: int) -> None``.
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
:param save_best_fn: a hook called when the undiscounted average mean
reward in evaluation phase gets better, with the signature
``f(policy: BasePolicy) -> None``.
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
:param save_checkpoint_fn: a function to save training process and
return the saved checkpoint path, with the signature ``f(epoch: int,
env_step: int, gradient_step: int) -> str``; you can save whatever you want.
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
:param resume_from_log: resume env_step/gradient_step and other metadata
from existing tensorboard log.
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
:param stop_fn: a function with signature ``f(mean_rewards: float) ->
bool``, receives the average undiscounted returns of the testing result,
returns a boolean which indicates whether reaching the goal.
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
:param reward_metric: a function with signature
``f(rewards: np.ndarray with shape (num_episode, agent_num)) -> np.ndarray
with shape (num_episode,)``, used in multi-agent RL. We need to return a
single scalar for each episode's result to monitor training in the
multi-agent RL setting. This function specifies what is the desired metric,
e.g., the reward of agent 1 or the average reward over all agents.
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
:param logger: A logger that logs statistics during
training/testing/updating. To not log anything, keep the default logger.
:param verbose: whether to print status information to stdout.
If set to False, status information will still be logged (provided that
logging is enabled via the `logging` module).
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
:param show_progress: whether to display a progress bar when training.
:param test_in_train: whether to test in the training phase.
"""
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
__doc__: str
@staticmethod
def gen_doc(learning_type: str) -> str:
"""Document string for subclass trainer."""
step_means = f'The "step" in {learning_type} trainer means '
if learning_type != "offline":
step_means += "an environment step (a.k.a. transition)."
else: # offline
step_means += "a gradient step."
trainer_name = learning_type.capitalize() + "Trainer"
return f"""An iterator class for {learning_type} trainer procedure.
Returns an iterator that yields a 3-tuple (epoch, stats, info) of
train results on every epoch.
{step_means}
Example usage:
::
trainer = {trainer_name}(...)
for epoch, epoch_stat, info in trainer:
print("Epoch:", epoch)
print(epoch_stat)
print(info)
do_something_with_policy()
query_something_about_policy()
make_a_plot_with(epoch_stat)
display(info)
- epoch int: the epoch number
- epoch_stat dict: a large collection of metrics of the current epoch
- info dict: result returned from :func:`~tianshou.trainer.gather_info`
You can even iterate on several trainers at the same time:
::
trainer1 = {trainer_name}(...)
trainer2 = {trainer_name}(...)
for result1, result2, ... in zip(trainer1, trainer2, ...):
compare_results(result1, result2, ...)
"""
def __init__(
self,
policy: BasePolicy,
max_epoch: int,
batch_size: int | None,
train_collector: Collector | None = None,
test_collector: Collector | None = None,
buffer: ReplayBuffer | None = None,
step_per_epoch: int | None = None,
repeat_per_collect: int | None = None,
episode_per_test: int | None = None,
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
update_per_step: float = 1.0,
step_per_collect: int | None = None,
episode_per_collect: int | None = None,
train_fn: Callable[[int, int], None] | None = None,
test_fn: Callable[[int, int | None], None] | None = None,
stop_fn: Callable[[float], bool] | None = None,
save_best_fn: Callable[[BasePolicy], None] | None = None,
save_checkpoint_fn: Callable[[int, int, int], str] | None = None,
resume_from_log: bool = False,
reward_metric: Callable[[np.ndarray], np.ndarray] | None = None,
logger: BaseLogger = LazyLogger(),
verbose: bool = True,
show_progress: bool = True,
test_in_train: bool = True,
):
self.policy = policy
if buffer is not None:
buffer = policy.process_buffer(buffer)
self.buffer = buffer
self.train_collector = train_collector
self.test_collector = test_collector
self.logger = logger
self.start_time = time.time()
self.stat: defaultdict[str, MovAvg] = defaultdict(MovAvg)
self.best_reward = 0.0
self.best_reward_std = 0.0
self.start_epoch = 0
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
# This is only used for logging but creeps into the implementations
# of the trainers. I believe it would be better to remove
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
self._gradient_step = 0
self.env_step = 0
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
self.policy_update_time = 0.0
self.max_epoch = max_epoch
self.step_per_epoch = step_per_epoch
# either on of these two
self.step_per_collect = step_per_collect
self.episode_per_collect = episode_per_collect
self.update_per_step = update_per_step
self.repeat_per_collect = repeat_per_collect
self.episode_per_test = episode_per_test
self.batch_size = batch_size
self.train_fn = train_fn
self.test_fn = test_fn
self.stop_fn = stop_fn
self.save_best_fn = save_best_fn
self.save_checkpoint_fn = save_checkpoint_fn
self.reward_metric = reward_metric
self.verbose = verbose
self.show_progress = show_progress
self.test_in_train = test_in_train
self.resume_from_log = resume_from_log
self.is_run = False
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
self.last_rew, self.last_len = 0.0, 0.0
self.epoch = self.start_epoch
self.best_epoch = self.start_epoch
self.stop_fn_flag = False
self.iter_num = 0
def _reset_collectors(self, reset_buffer: bool = False) -> None:
if self.train_collector is not None:
self.train_collector.reset(reset_buffer=reset_buffer)
if self.test_collector is not None:
self.test_collector.reset(reset_buffer=reset_buffer)
def reset(self, reset_collectors: bool = True, reset_buffer: bool = False) -> None:
"""Initialize or reset the instance to yield a new iterator from zero."""
self.is_run = False
self.env_step = 0
if self.resume_from_log:
(
self.start_epoch,
self.env_step,
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
self._gradient_step,
) = self.logger.restore_data()
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
self.last_rew, self.last_len = 0.0, 0.0
self.start_time = time.time()
if reset_collectors:
self._reset_collectors(reset_buffer=reset_buffer)
if self.train_collector is not None and (
self.train_collector.policy != self.policy or self.test_collector is None
):
self.test_in_train = False
if self.test_collector is not None:
assert self.episode_per_test is not None
assert not isinstance(self.test_collector, AsyncCollector) # Issue 700
test_result = test_episode(
self.test_collector,
self.test_fn,
self.start_epoch,
self.episode_per_test,
self.logger,
self.env_step,
self.reward_metric,
)
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
assert test_result.returns_stat is not None # for mypy
self.best_epoch = self.start_epoch
self.best_reward, self.best_reward_std = (
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
test_result.returns_stat.mean,
test_result.returns_stat.std,
)
if self.save_best_fn:
self.save_best_fn(self.policy)
self.epoch = self.start_epoch
self.stop_fn_flag = False
self.iter_num = 0
def __iter__(self): # type: ignore
self.reset(reset_collectors=True, reset_buffer=False)
return self
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
def __next__(self) -> EpochStats:
"""Perform one epoch (both train and eval)."""
self.epoch += 1
self.iter_num += 1
if self.iter_num > 1:
# iterator exhaustion check
if self.epoch > self.max_epoch:
raise StopIteration
# exit flag 1, when stop_fn succeeds in train_step or test_step
if self.stop_fn_flag:
raise StopIteration
progress = tqdm.tqdm if self.show_progress else DummyTqdm
# perform n step_per_epoch
with progress(total=self.step_per_epoch, desc=f"Epoch #{self.epoch}", **tqdm_config) as t:
train_stat: CollectStatsBase
while t.n < t.total and not self.stop_fn_flag:
if self.train_collector is not None:
train_stat, self.stop_fn_flag = self.train_step()
pbar_data_dict = {
"env_step": str(self.env_step),
"rew": f"{self.last_rew:.2f}",
"len": str(int(self.last_len)),
"n/ep": str(train_stat.n_collected_episodes),
"n/st": str(train_stat.n_collected_steps),
}
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
t.update(train_stat.n_collected_steps)
if self.stop_fn_flag:
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
t.set_postfix(**pbar_data_dict)
break
else:
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
pbar_data_dict = {}
assert self.buffer, "No train_collector or buffer specified"
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
train_stat = CollectStatsBase(
n_collected_episodes=len(self.buffer),
)
t.update()
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
update_stat = self.policy_update_fn(train_stat)
pbar_data_dict = set_numerical_fields_to_precision(pbar_data_dict)
pbar_data_dict["gradient_step"] = str(self._gradient_step)
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
t.set_postfix(**pbar_data_dict)
if t.n <= t.total and not self.stop_fn_flag:
t.update()
# for offline RL
if self.train_collector is None:
assert self.buffer is not None
batch_size = self.batch_size or len(self.buffer)
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
self.env_step = self._gradient_step * batch_size
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
test_stat = None
if not self.stop_fn_flag:
self.logger.save_data(
self.epoch,
self.env_step,
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
self._gradient_step,
self.save_checkpoint_fn,
)
# test
if self.test_collector is not None:
test_stat, self.stop_fn_flag = self.test_step()
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
info_stat = gather_info(
start_time=self.start_time,
policy_update_time=self.policy_update_time,
gradient_step=self._gradient_step,
best_reward=self.best_reward,
best_reward_std=self.best_reward_std,
train_collector=self.train_collector,
test_collector=self.test_collector,
)
self.logger.log_info_data(asdict(info_stat), self.epoch)
# in case trainer is used with run(), epoch_stat will not be returned
epoch_stat: EpochStats = EpochStats(
epoch=self.epoch,
train_collect_stat=train_stat,
test_collect_stat=test_stat,
training_stat=update_stat,
info_stat=info_stat,
)
return epoch_stat
def test_step(self) -> tuple[CollectStats, bool]:
"""Perform one testing step."""
assert self.episode_per_test is not None
assert self.test_collector is not None
stop_fn_flag = False
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
test_stat = test_episode(
self.test_collector,
self.test_fn,
self.epoch,
self.episode_per_test,
self.logger,
self.env_step,
self.reward_metric,
)
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
assert test_stat.returns_stat is not None # for mypy
rew, rew_std = test_stat.returns_stat.mean, test_stat.returns_stat.std
if self.best_epoch < 0 or self.best_reward < rew:
self.best_epoch = self.epoch
self.best_reward = float(rew)
self.best_reward_std = rew_std
if self.save_best_fn:
self.save_best_fn(self.policy)
log_msg = (
f"Epoch #{self.epoch}: test_reward: {rew:.6f} ± {rew_std:.6f},"
f" best_reward: {self.best_reward:.6f} ± "
f"{self.best_reward_std:.6f} in #{self.best_epoch}"
)
log.info(log_msg)
if self.verbose:
print(log_msg, flush=True)
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
if self.stop_fn and self.stop_fn(self.best_reward):
stop_fn_flag = True
return test_stat, stop_fn_flag
def train_step(self) -> tuple[CollectStats, bool]:
"""Perform one training step.
If test_in_train and stop_fn are set, will compute the stop_fn on the mean return of the training data.
Then, if the stop_fn is True there, will collect test data also compute the stop_fn of the mean return
on it.
Finally, if the latter is also True, will set should_stop_training to True.
:return: A tuple of the training stats and a boolean indicating whether to stop training.
"""
assert self.episode_per_test is not None
assert self.train_collector is not None
should_stop_training = False
if self.train_fn:
self.train_fn(self.epoch, self.env_step)
result = self.train_collector.collect(
n_step=self.step_per_collect,
n_episode=self.episode_per_collect,
)
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
self.env_step += result.n_collected_steps
if result.n_collected_episodes > 0:
assert result.returns_stat is not None # for mypy
assert result.lens_stat is not None # for mypy
self.last_rew = result.returns_stat.mean
self.last_len = result.lens_stat.mean
if self.reward_metric: # TODO: move inside collector
rew = self.reward_metric(result.returns)
result.returns = rew
result.returns_stat = SequenceSummaryStats.from_sequence(rew)
self.logger.log_train_data(asdict(result), self.env_step)
if (
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
result.n_collected_episodes > 0
and self.test_in_train
and self.stop_fn
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
and self.stop_fn(result.returns_stat.mean) # type: ignore
):
assert self.test_collector is not None
test_result = test_episode(
self.test_collector,
self.test_fn,
self.epoch,
self.episode_per_test,
self.logger,
self.env_step,
)
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
assert test_result.returns_stat is not None # for mypy
if self.stop_fn(test_result.returns_stat.mean):
should_stop_training = True
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
self.best_reward = test_result.returns_stat.mean
self.best_reward_std = test_result.returns_stat.std
return result, should_stop_training
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
# TODO: move moving average computation and logging into its own logger
# TODO: maybe think about a command line logger instead of always printing data dict
def _update_moving_avg_stats_and_log_update_data(self, update_stat: TrainingStats) -> None:
"""Log losses, update moving average stats, and also modify the smoothed_loss in update_stat."""
cur_losses_dict = update_stat.get_loss_stats_dict()
update_stat.smoothed_loss = self._update_moving_avg_stats_and_get_averaged_data(
cur_losses_dict,
)
self.logger.log_update_data(asdict(update_stat), self._gradient_step)
# TODO: seems convoluted, there should be a better way of dealing with the moving average stats
def _update_moving_avg_stats_and_get_averaged_data(
self,
data: dict[str, float],
) -> dict[str, float]:
"""Add entries to the moving average object in the trainer and retrieve the averaged results.
:param data: any entries to be tracked in the moving average object.
:return: A dictionary containing the averaged values of the tracked entries.
"""
smoothed_data = {}
for key, loss_item in data.items():
self.stat[key].add(loss_item)
smoothed_data[key] = self.stat[key].get()
return smoothed_data
@abstractmethod
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
def policy_update_fn(
self,
collect_stats: CollectStatsBase,
) -> TrainingStats:
"""Policy update function for different trainer implementation.
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
:param collect_stats: provides info about the most recent collection. In the offline case, this will contain
stats of the whole dataset
"""
def run(self, reset_prior_to_run: bool = True) -> InfoStats:
"""Consume iterator.
See itertools - recipes. Use functions that consume iterators at C speed
(feed the entire iterator into a zero-length deque).
"""
if reset_prior_to_run:
self.reset()
try:
self.is_run = True
deque(self, maxlen=0) # feed the entire iterator into a zero-length deque
info = gather_info(
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
start_time=self.start_time,
policy_update_time=self.policy_update_time,
gradient_step=self._gradient_step,
best_reward=self.best_reward,
best_reward_std=self.best_reward_std,
train_collector=self.train_collector,
test_collector=self.test_collector,
)
finally:
self.is_run = False
return info
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
def _sample_and_update(self, buffer: ReplayBuffer) -> TrainingStats:
"""Sample a mini-batch, perform one gradient step, and update the _gradient_step counter."""
self._gradient_step += 1
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
# Note: since sample_size=batch_size, this will perform
# exactly one gradient step. This is why we don't need to calculate the
# number of gradient steps, like in the on-policy case.
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
update_stat = self.policy.update(sample_size=self.batch_size, buffer=buffer)
self._update_moving_avg_stats_and_log_update_data(update_stat)
return update_stat
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
class OfflineTrainer(BaseTrainer):
"""Offline trainer, samples mini-batches from buffer and passes them to update.
Uses a buffer directly and usually does not have a collector.
"""
# for mypy
assert isinstance(BaseTrainer.__doc__, str)
__doc__ += BaseTrainer.gen_doc("offline") + "\n".join(BaseTrainer.__doc__.split("\n")[1:])
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
def policy_update_fn(
self,
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
collect_stats: CollectStatsBase | None = None,
) -> TrainingStats:
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
"""Perform one off-line policy update."""
assert self.buffer
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
update_stat = self._sample_and_update(self.buffer)
# logging
self.policy_update_time += update_stat.train_time
return update_stat
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
class OffpolicyTrainer(BaseTrainer):
"""Offpolicy trainer, samples mini-batches from buffer and passes them to update.
Note that with this trainer, it is expected that the policy's `learn` method
does not perform additional mini-batching but just updates params from the received
mini-batch.
"""
# for mypy
assert isinstance(BaseTrainer.__doc__, str)
__doc__ += BaseTrainer.gen_doc("offpolicy") + "\n".join(BaseTrainer.__doc__.split("\n")[1:])
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
def policy_update_fn(
self,
# TODO: this is the only implementation where collect_stats is actually needed. Maybe change interface?
collect_stats: CollectStatsBase,
) -> TrainingStats:
"""Perform `update_per_step * n_collected_steps` gradient steps by sampling mini-batches from the buffer.
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
:param collect_stats: the :class:`~TrainingStats` instance returned by the last gradient step. Some values
in it will be replaced by their moving averages.
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
"""
assert self.train_collector is not None
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
n_collected_steps = collect_stats.n_collected_steps
n_gradient_steps = round(self.update_per_step * n_collected_steps)
if n_gradient_steps == 0:
raise ValueError(
f"n_gradient_steps is 0, n_collected_steps={n_collected_steps}, "
f"update_per_step={self.update_per_step}",
)
for _ in range(n_gradient_steps):
update_stat = self._sample_and_update(self.train_collector.buffer)
# logging
self.policy_update_time += update_stat.train_time
# TODO: only the last update_stat is returned, should be improved
return update_stat
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
class OnpolicyTrainer(BaseTrainer):
"""On-policy trainer, passes the entire buffer to .update and resets it after.
Note that it is expected that the learn method of a policy will perform
batching when using this trainer.
"""
# for mypy
assert isinstance(BaseTrainer.__doc__, str)
__doc__ = BaseTrainer.gen_doc("onpolicy") + "\n".join(BaseTrainer.__doc__.split("\n")[1:])
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
def policy_update_fn(
self,
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
result: CollectStatsBase | None = None,
) -> TrainingStats:
"""Perform one on-policy update by passing the entire buffer to the policy's update method."""
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
assert self.train_collector is not None
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
training_stat = self.policy.update(
sample_size=0,
buffer=self.train_collector.buffer,
# Note: sample_size is None, so the whole buffer is used for the update.
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
# The kwargs are in the end passed to the .learn method, which uses
# batch_size to iterate through the buffer in mini-batches
# Off-policy algos typically don't use the batch_size kwarg at all
batch_size=self.batch_size,
repeat=self.repeat_per_collect,
)
# just for logging, no functional role
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
self.policy_update_time += training_stat.train_time
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
# TODO: remove the gradient step counting in trainers? Doesn't seem like
# it's important and it adds complexity
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
self._gradient_step += 1
if self.batch_size is None:
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
self._gradient_step += 1
elif self.batch_size > 0:
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
self._gradient_step += int((len(self.train_collector.buffer) - 0.1) // self.batch_size)
Improved typing and reduced duplication (#912) # Goals of the PR The PR introduces **no changes to functionality**, apart from improved input validation here and there. The main goals are to reduce some complexity of the code, to improve types and IDE completions, and to extend documentation and block comments where appropriate. Because of the change to the trainer interfaces, many files are affected (more details below), but still the overall changes are "small" in a certain sense. ## Major Change 1 - BatchProtocol **TL;DR:** One can now annotate which fields the batch is expected to have on input params and which fields a returned batch has. Should be useful for reading the code. getting meaningful IDE support, and catching bugs with mypy. This annotation strategy will continue to work if Batch is replaced by TensorDict or by something else. **In more detail:** Batch itself has no fields and using it for annotations is of limited informational power. Batches with fields are not separate classes but instead instances of Batch directly, so there is no type that could be used for annotation. Fortunately, python `Protocol` is here for the rescue. With these changes we can now do things like ```python class ActionBatchProtocol(BatchProtocol): logits: Sequence[Union[tuple, torch.Tensor]] dist: torch.distributions.Distribution act: torch.Tensor state: Optional[torch.Tensor] class RolloutBatchProtocol(BatchProtocol): obs: torch.Tensor obs_next: torch.Tensor info: Dict[str, Any] rew: torch.Tensor terminated: torch.Tensor truncated: torch.Tensor class PGPolicy(BasePolicy): ... def forward( self, batch: RolloutBatchProtocol, state: Optional[Union[dict, Batch, np.ndarray]] = None, **kwargs: Any, ) -> ActionBatchProtocol: ``` The IDE and mypy are now very helpful in finding errors and in auto-completion, whereas before the tools couldn't assist in that at all. ## Major Change 2 - remove duplication in trainer package **TL;DR:** There was a lot of duplication between `BaseTrainer` and its subclasses. Even worse, it was almost-duplication. There was also interface fragmentation through things like `onpolicy_trainer`. Now this duplication is gone and all downstream code was adjusted. **In more detail:** Since this change affects a lot of code, I would like to explain why I thought it to be necessary. 1. The subclasses of `BaseTrainer` just duplicated docstrings and constructors. What's worse, they changed the order of args there, even turning some kwargs of BaseTrainer into args. They also had the arg `learning_type` which was passed as kwarg to the base class and was unused there. This made things difficult to maintain, and in fact some errors were already present in the duplicated docstrings. 2. The "functions" a la `onpolicy_trainer`, which just called the `OnpolicyTrainer.run`, not only introduced interface fragmentation but also completely obfuscated the docstring and interfaces. They themselves had no dosctring and the interface was just `*args, **kwargs`, which makes it impossible to understand what they do and which things can be passed without reading their implementation, then reading the docstring of the associated class, etc. Needless to say, mypy and IDEs provide no support with such functions. Nevertheless, they were used everywhere in the code-base. I didn't find the sacrifices in clarity and complexity justified just for the sake of not having to write `.run()` after instantiating a trainer. 3. The trainers are all very similar to each other. As for my application I needed a new trainer, I wanted to understand their structure. The similarity, however, was hard to discover since they were all in separate modules and there was so much duplication. I kept staring at the constructors for a while until I figured out that essentially no changes to the superclass were introduced. Now they are all in the same module and the similarities/differences between them are much easier to grasp (in my opinion) 4. Because of (1), I had to manually change and check a lot of code, which was very tedious and boring. This kind of work won't be necessary in the future, since now IDEs can be used for changing signatures, renaming args and kwargs, changing class names and so on. I have some more reasons, but maybe the above ones are convincing enough. ## Minor changes: improved input validation and types I added input validation for things like `state` and `action_scaling` (which only makes sense for continuous envs). After adding this, some tests failed to pass this validation. There I added `action_scaling=isinstance(env.action_space, Box)`, after which tests were green. I don't know why the tests were green before, since action scaling doesn't make sense for discrete actions. I guess some aspect was not tested and didn't crash. I also added Literal in some places, in particular for `action_bound_method`. Now it is no longer allowed to pass an empty string, instead one should pass `None`. Also here there is input validation with clear error messages. @Trinkle23897 The functional tests are green. I didn't want to fix the formatting, since it will change in the next PR that will solve #914 anyway. I also found a whole bunch of code in `docs/_static`, which I just deleted (shouldn't it be copied from the sources during docs build instead of committed?). I also haven't adjusted the documentation yet, which atm still mentions the trainers of the type `onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()` ## Breaking Changes The adjustments to the trainer package introduce breaking changes as duplicated interfaces are deleted. However, it should be very easy for users to adjust to them --------- Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
# Note: this is the main difference to the off-policy trainer!
# The second difference is that batches of data are sampled without replacement
# during training, whereas in off-policy or offline training, the batches are
# sampled with replacement (and potentially custom prioritization).
self.train_collector.reset_buffer(keep_statistics=True)
# The step is the number of mini-batches used for the update, so essentially
Feature/dataclasses (#996) This PR adds strict typing to the output of `update` and `learn` in all policies. This will likely be the last large refactoring PR before the next release (0.6.0, not 1.0.0), so it requires some attention. Several difficulties were encountered on the path to that goal: 1. The policy hierarchy is actually "broken" in the sense that the keys of dicts that were output by `learn` did not follow the same enhancement (inheritance) pattern as the policies. This is a real problem and should be addressed in the near future. Generally, several aspects of the policy design and hierarchy might deserve a dedicated discussion. 2. Each policy needs to be generic in the stats return type, because one might want to extend it at some point and then also extend the stats. Even within the source code base this pattern is necessary in many places. 3. The interaction between learn and update is a bit quirky, we currently handle it by having update modify special field inside TrainingStats, whereas all other fields are handled by learn. 4. The IQM module is a policy wrapper and required a TrainingStatsWrapper. The latter relies on a bunch of black magic. They were addressed by: 1. Live with the broken hierarchy, which is now made visible by bounds in generics. We use type: ignore where appropriate. 2. Make all policies generic with bounds following the policy inheritance hierarchy (which is incorrect, see above). We experimented a bit with nested TrainingStats classes, but that seemed to add more complexity and be harder to understand. Unfortunately, mypy thinks that the code below is wrong, wherefore we have to add `type: ignore` to the return of each `learn` ```python T = TypeVar("T", bound=int) def f() -> T: return 3 ``` 3. See above 4. Write representative tests for the `TrainingStatsWrapper`. Still, the black magic might cause nasty surprises down the line (I am not proud of it)... Closes #933 --------- Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de> Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
self._update_moving_avg_stats_and_log_update_data(training_stat)
return training_stat