| 
									
										
										
										
											2020-04-11 16:54:27 +08:00
										 |  |  | import os | 
					
						
							| 
									
										
										
										
											2020-04-08 21:13:15 +08:00
										 |  |  | import gym | 
					
						
							|  |  |  | import torch | 
					
						
							|  |  |  | import pprint | 
					
						
							|  |  |  | import argparse | 
					
						
							|  |  |  | import numpy as np | 
					
						
							|  |  |  | from torch.utils.tensorboard import SummaryWriter | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | from tianshou.policy import DQNPolicy | 
					
						
							| 
									
										
										
										
											2021-02-24 14:48:42 +08:00
										 |  |  | from tianshou.utils import BasicLogger | 
					
						
							| 
									
										
										
										
											2020-09-02 13:03:32 +08:00
										 |  |  | from tianshou.env import DummyVectorEnv | 
					
						
							| 
									
										
										
										
											2020-04-08 21:13:15 +08:00
										 |  |  | from tianshou.trainer import offpolicy_trainer | 
					
						
							| 
									
										
										
										
											2020-07-09 22:57:01 +08:00
										 |  |  | from tianshou.utils.net.common import Recurrent | 
					
						
							| 
									
										
										
										
											2021-02-19 10:33:49 +08:00
										 |  |  | from tianshou.data import Collector, VectorReplayBuffer | 
					
						
							| 
									
										
										
										
											2020-04-08 21:13:15 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def get_args(): | 
					
						
							|  |  |  |     parser = argparse.ArgumentParser() | 
					
						
							|  |  |  |     parser.add_argument('--task', type=str, default='CartPole-v0') | 
					
						
							| 
									
										
										
										
											2020-08-27 12:15:18 +08:00
										 |  |  |     parser.add_argument('--seed', type=int, default=1) | 
					
						
							| 
									
										
										
										
											2020-04-08 21:13:15 +08:00
										 |  |  |     parser.add_argument('--eps-test', type=float, default=0.05) | 
					
						
							|  |  |  |     parser.add_argument('--eps-train', type=float, default=0.1) | 
					
						
							|  |  |  |     parser.add_argument('--buffer-size', type=int, default=20000) | 
					
						
							|  |  |  |     parser.add_argument('--stack-num', type=int, default=4) | 
					
						
							|  |  |  |     parser.add_argument('--lr', type=float, default=1e-3) | 
					
						
							| 
									
										
										
										
											2020-08-27 12:15:18 +08:00
										 |  |  |     parser.add_argument('--gamma', type=float, default=0.95) | 
					
						
							| 
									
										
										
										
											2021-02-27 11:20:43 +08:00
										 |  |  |     parser.add_argument('--n-step', type=int, default=3) | 
					
						
							| 
									
										
										
										
											2020-04-08 21:13:15 +08:00
										 |  |  |     parser.add_argument('--target-update-freq', type=int, default=320) | 
					
						
							| 
									
										
										
										
											2021-02-27 11:20:43 +08:00
										 |  |  |     parser.add_argument('--epoch', type=int, default=5) | 
					
						
							|  |  |  |     parser.add_argument('--step-per-epoch', type=int, default=20000) | 
					
						
							|  |  |  |     parser.add_argument('--update-per-step', type=float, default=1 / 16) | 
					
						
							|  |  |  |     parser.add_argument('--step-per-collect', type=int, default=16) | 
					
						
							|  |  |  |     parser.add_argument('--batch-size', type=int, default=128) | 
					
						
							|  |  |  |     parser.add_argument('--layer-num', type=int, default=2) | 
					
						
							|  |  |  |     parser.add_argument('--training-num', type=int, default=16) | 
					
						
							| 
									
										
										
										
											2020-04-08 21:13:15 +08:00
										 |  |  |     parser.add_argument('--test-num', type=int, default=100) | 
					
						
							|  |  |  |     parser.add_argument('--logdir', type=str, default='log') | 
					
						
							|  |  |  |     parser.add_argument('--render', type=float, default=0.) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         '--device', type=str, | 
					
						
							|  |  |  |         default='cuda' if torch.cuda.is_available() else 'cpu') | 
					
						
							|  |  |  |     args = parser.parse_known_args()[0] | 
					
						
							|  |  |  |     return args | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def test_drqn(args=get_args()): | 
					
						
							|  |  |  |     env = gym.make(args.task) | 
					
						
							|  |  |  |     args.state_shape = env.observation_space.shape or env.observation_space.n | 
					
						
							|  |  |  |     args.action_shape = env.action_space.shape or env.action_space.n | 
					
						
							|  |  |  |     # train_envs = gym.make(args.task) | 
					
						
							|  |  |  |     # you can also use tianshou.env.SubprocVectorEnv | 
					
						
							| 
									
										
										
										
											2020-08-19 15:00:24 +08:00
										 |  |  |     train_envs = DummyVectorEnv( | 
					
						
							|  |  |  |         [lambda: gym.make(args.task) for _ in range(args.training_num)]) | 
					
						
							| 
									
										
										
										
											2020-04-08 21:13:15 +08:00
										 |  |  |     # test_envs = gym.make(args.task) | 
					
						
							| 
									
										
										
										
											2020-08-19 15:00:24 +08:00
										 |  |  |     test_envs = DummyVectorEnv( | 
					
						
							| 
									
										
										
										
											2020-04-08 21:13:15 +08:00
										 |  |  |         [lambda: gym.make(args.task) for _ in range(args.test_num)]) | 
					
						
							|  |  |  |     # seed | 
					
						
							|  |  |  |     np.random.seed(args.seed) | 
					
						
							|  |  |  |     torch.manual_seed(args.seed) | 
					
						
							|  |  |  |     train_envs.seed(args.seed) | 
					
						
							|  |  |  |     test_envs.seed(args.seed) | 
					
						
							|  |  |  |     # model | 
					
						
							|  |  |  |     net = Recurrent(args.layer_num, args.state_shape, | 
					
						
							| 
									
										
										
										
											2020-07-09 22:57:01 +08:00
										 |  |  |                     args.action_shape, args.device).to(args.device) | 
					
						
							| 
									
										
										
										
											2020-04-08 21:13:15 +08:00
										 |  |  |     optim = torch.optim.Adam(net.parameters(), lr=args.lr) | 
					
						
							|  |  |  |     policy = DQNPolicy( | 
					
						
							|  |  |  |         net, optim, args.gamma, args.n_step, | 
					
						
							|  |  |  |         target_update_freq=args.target_update_freq) | 
					
						
							|  |  |  |     # collector | 
					
						
							| 
									
										
										
										
											2021-02-19 10:33:49 +08:00
										 |  |  |     buffer = VectorReplayBuffer( | 
					
						
							|  |  |  |         args.buffer_size, buffer_num=len(train_envs), | 
					
						
							|  |  |  |         stack_num=args.stack_num, ignore_obs_next=True) | 
					
						
							|  |  |  |     train_collector = Collector(policy, train_envs, buffer, exploration_noise=True) | 
					
						
							| 
									
										
										
										
											2020-04-08 21:13:15 +08:00
										 |  |  |     # the stack_num is for RNN training: sample framestack obs | 
					
						
							| 
									
										
										
										
											2021-02-19 10:33:49 +08:00
										 |  |  |     test_collector = Collector(policy, test_envs, exploration_noise=True) | 
					
						
							| 
									
										
										
										
											2020-04-08 21:13:15 +08:00
										 |  |  |     # policy.set_eps(1) | 
					
						
							| 
									
										
										
										
											2021-02-19 10:33:49 +08:00
										 |  |  |     train_collector.collect(n_step=args.batch_size * args.training_num) | 
					
						
							| 
									
										
										
										
											2020-04-08 21:13:15 +08:00
										 |  |  |     # log | 
					
						
							| 
									
										
										
										
											2020-04-11 16:54:27 +08:00
										 |  |  |     log_path = os.path.join(args.logdir, args.task, 'drqn') | 
					
						
							|  |  |  |     writer = SummaryWriter(log_path) | 
					
						
							| 
									
										
										
										
											2021-02-24 14:48:42 +08:00
										 |  |  |     logger = BasicLogger(writer) | 
					
						
							| 
									
										
										
										
											2020-04-11 16:54:27 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def save_fn(policy): | 
					
						
							|  |  |  |         torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) | 
					
						
							| 
									
										
										
										
											2020-04-08 21:13:15 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-09-26 16:35:37 +08:00
										 |  |  |     def stop_fn(mean_rewards): | 
					
						
							|  |  |  |         return mean_rewards >= env.spec.reward_threshold | 
					
						
							| 
									
										
										
										
											2020-04-08 21:13:15 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-09-26 16:35:37 +08:00
										 |  |  |     def train_fn(epoch, env_step): | 
					
						
							| 
									
										
										
										
											2020-04-08 21:13:15 +08:00
										 |  |  |         policy.set_eps(args.eps_train) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2020-09-26 16:35:37 +08:00
										 |  |  |     def test_fn(epoch, env_step): | 
					
						
							| 
									
										
										
										
											2020-04-08 21:13:15 +08:00
										 |  |  |         policy.set_eps(args.eps_test) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # trainer | 
					
						
							|  |  |  |     result = offpolicy_trainer( | 
					
						
							|  |  |  |         policy, train_collector, test_collector, args.epoch, | 
					
						
							| 
									
										
										
										
											2021-02-21 13:06:02 +08:00
										 |  |  |         args.step_per_epoch, args.step_per_collect, args.test_num, | 
					
						
							|  |  |  |         args.batch_size, update_per_step=args.update_per_step, | 
					
						
							|  |  |  |         train_fn=train_fn, test_fn=test_fn, stop_fn=stop_fn, | 
					
						
							| 
									
										
										
										
											2021-02-24 14:48:42 +08:00
										 |  |  |         save_fn=save_fn, logger=logger) | 
					
						
							| 
									
										
										
										
											2020-04-08 21:13:15 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     assert stop_fn(result['best_reward']) | 
					
						
							|  |  |  |     if __name__ == '__main__': | 
					
						
							|  |  |  |         pprint.pprint(result) | 
					
						
							|  |  |  |         # Let's watch its performance! | 
					
						
							|  |  |  |         env = gym.make(args.task) | 
					
						
							| 
									
										
										
										
											2020-08-27 12:15:18 +08:00
										 |  |  |         policy.eval() | 
					
						
							| 
									
										
										
										
											2020-04-08 21:13:15 +08:00
										 |  |  |         collector = Collector(policy, env) | 
					
						
							|  |  |  |         result = collector.collect(n_episode=1, render=args.render) | 
					
						
							| 
									
										
										
										
											2021-02-19 10:33:49 +08:00
										 |  |  |         rews, lens = result["rews"], result["lens"] | 
					
						
							|  |  |  |         print(f"Final reward: {rews.mean()}, length: {lens.mean()}") | 
					
						
							| 
									
										
										
										
											2020-04-08 21:13:15 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == '__main__': | 
					
						
							|  |  |  |     test_drqn(get_args()) |