233 lines
9.0 KiB
Python
Raw Normal View History

import numpy as np
from numba import njit
from typing import List, Tuple, Union, Sequence, Optional
from tianshou.data import Batch, ReplayBuffer, PrioritizedReplayBuffer
from tianshou.data.batch import _create_value, _alloc_by_keys_diff
class ReplayBufferManager(ReplayBuffer):
"""ReplayBufferManager contains a list of ReplayBuffer with exactly the same \
configuration.
These replay buffers have contiguous memory layout, and the storage space each
buffer has is a shallow copy of the topmost memory.
:param buffer_list: a list of ReplayBuffer needed to be handled.
.. seealso::
Please refer to :class:`~tianshou.data.ReplayBuffer` for other APIs' usage.
"""
def __init__(self, buffer_list: List[ReplayBuffer]) -> None:
self.buffer_num = len(buffer_list)
self.buffers = np.array(buffer_list, dtype=np.object)
offset, size = [], 0
buffer_type = type(self.buffers[0])
kwargs = self.buffers[0].options
for buf in self.buffers:
assert buf._meta.is_empty()
assert isinstance(buf, buffer_type) and buf.options == kwargs
offset.append(size)
size += buf.maxsize
self._offset = np.array(offset)
self._extend_offset = np.array(offset + [size])
self._lengths = np.zeros_like(offset)
super().__init__(size=size, **kwargs)
self._compile()
self._meta: Batch
def _compile(self) -> None:
lens = last = index = np.array([0])
offset = np.array([0, 1])
done = np.array([False, False])
_prev_index(index, offset, done, last, lens)
_next_index(index, offset, done, last, lens)
def __len__(self) -> int:
return self._lengths.sum()
def reset(self, keep_statistics: bool = False) -> None:
self.last_index = self._offset.copy()
self._lengths = np.zeros_like(self._offset)
for buf in self.buffers:
buf.reset(keep_statistics=keep_statistics)
def _set_batch_for_children(self) -> None:
for offset, buf in zip(self._offset, self.buffers):
buf.set_batch(self._meta[offset:offset + buf.maxsize])
def set_batch(self, batch: Batch) -> None:
super().set_batch(batch)
self._set_batch_for_children()
def unfinished_index(self) -> np.ndarray:
return np.concatenate([
buf.unfinished_index() + offset
for offset, buf in zip(self._offset, self.buffers)
])
def prev(self, index: Union[int, np.integer, np.ndarray]) -> np.ndarray:
if isinstance(index, (list, np.ndarray)):
return _prev_index(np.asarray(index), self._extend_offset,
self.done, self.last_index, self._lengths)
else:
return _prev_index(np.array([index]), self._extend_offset,
self.done, self.last_index, self._lengths)[0]
def next(self, index: Union[int, np.integer, np.ndarray]) -> np.ndarray:
if isinstance(index, (list, np.ndarray)):
return _next_index(np.asarray(index), self._extend_offset,
self.done, self.last_index, self._lengths)
else:
return _next_index(np.array([index]), self._extend_offset,
self.done, self.last_index, self._lengths)[0]
def update(self, buffer: ReplayBuffer) -> np.ndarray:
"""The ReplayBufferManager cannot be updated by any buffer."""
raise NotImplementedError
def add(
self, batch: Batch, buffer_ids: Optional[Union[np.ndarray, List[int]]] = None
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
"""Add a batch of data into ReplayBufferManager.
Each of the data's length (first dimension) must equal to the length of
buffer_ids. By default buffer_ids is [0, 1, ..., buffer_num - 1].
Return (current_index, episode_reward, episode_length, episode_start_index). If
the episode is not finished, the return value of episode_length and
episode_reward is 0.
"""
# preprocess batch
b = Batch()
for key in set(self._reserved_keys).intersection(batch.keys()):
b.__dict__[key] = batch[key]
batch = b
assert set(["obs", "act", "rew", "done"]).issubset(batch.keys())
if self._save_only_last_obs:
batch.obs = batch.obs[:, -1]
if not self._save_obs_next:
batch.pop("obs_next", None)
elif self._save_only_last_obs:
batch.obs_next = batch.obs_next[:, -1]
# get index
if buffer_ids is None:
buffer_ids = np.arange(self.buffer_num)
ptrs, ep_lens, ep_rews, ep_idxs = [], [], [], []
for batch_idx, buffer_id in enumerate(buffer_ids):
ptr, ep_rew, ep_len, ep_idx = self.buffers[buffer_id]._add_index(
batch.rew[batch_idx], batch.done[batch_idx]
)
ptrs.append(ptr + self._offset[buffer_id])
ep_lens.append(ep_len)
ep_rews.append(ep_rew)
ep_idxs.append(ep_idx + self._offset[buffer_id])
self.last_index[buffer_id] = ptr + self._offset[buffer_id]
self._lengths[buffer_id] = len(self.buffers[buffer_id])
ptrs = np.array(ptrs)
try:
self._meta[ptrs] = batch
except ValueError:
batch.rew = batch.rew.astype(np.float)
batch.done = batch.done.astype(np.bool_)
if self._meta.is_empty():
self._meta = _create_value( # type: ignore
batch, self.maxsize, stack=False)
else: # dynamic key pops up in batch
_alloc_by_keys_diff(self._meta, batch, self.maxsize, False)
self._set_batch_for_children()
self._meta[ptrs] = batch
return ptrs, np.array(ep_rews), np.array(ep_lens), np.array(ep_idxs)
def sample_index(self, batch_size: int) -> np.ndarray:
if batch_size < 0:
return np.array([], np.int)
if self._sample_avail and self.stack_num > 1:
all_indices = np.concatenate([
buf.sample_index(0) + offset
for offset, buf in zip(self._offset, self.buffers)
])
if batch_size == 0:
return all_indices
else:
return np.random.choice(all_indices, batch_size)
if batch_size == 0: # get all available indices
sample_num = np.zeros(self.buffer_num, np.int)
else:
buffer_idx = np.random.choice(
self.buffer_num, batch_size, p=self._lengths / self._lengths.sum()
)
sample_num = np.bincount(buffer_idx, minlength=self.buffer_num)
# avoid batch_size > 0 and sample_num == 0 -> get child's all data
sample_num[sample_num == 0] = -1
return np.concatenate([
buf.sample_index(bsz) + offset
for offset, buf, bsz in zip(self._offset, self.buffers, sample_num)
])
class PrioritizedReplayBufferManager(PrioritizedReplayBuffer, ReplayBufferManager):
"""PrioritizedReplayBufferManager contains a list of PrioritizedReplayBuffer with \
exactly the same configuration.
These replay buffers have contiguous memory layout, and the storage space each
buffer has is a shallow copy of the topmost memory.
:param buffer_list: a list of PrioritizedReplayBuffer needed to be handled.
.. seealso::
Please refer to :class:`~tianshou.data.ReplayBuffer` for other APIs' usage.
"""
def __init__(self, buffer_list: Sequence[PrioritizedReplayBuffer]) -> None:
ReplayBufferManager.__init__(self, buffer_list) # type: ignore
kwargs = buffer_list[0].options
for buf in buffer_list:
del buf.weight
PrioritizedReplayBuffer.__init__(self, self.maxsize, **kwargs)
@njit
def _prev_index(
index: np.ndarray,
offset: np.ndarray,
done: np.ndarray,
last_index: np.ndarray,
lengths: np.ndarray,
) -> np.ndarray:
index = index % offset[-1]
prev_index = np.zeros_like(index)
for start, end, cur_len, last in zip(offset[:-1], offset[1:], lengths, last_index):
mask = (start <= index) & (index < end)
cur_len = max(1, cur_len)
if np.sum(mask) > 0:
subind = index[mask]
subind = (subind - start - 1) % cur_len
end_flag = done[subind + start] | (subind + start == last)
prev_index[mask] = (subind + end_flag) % cur_len + start
return prev_index
@njit
def _next_index(
index: np.ndarray,
offset: np.ndarray,
done: np.ndarray,
last_index: np.ndarray,
lengths: np.ndarray,
) -> np.ndarray:
index = index % offset[-1]
next_index = np.zeros_like(index)
for start, end, cur_len, last in zip(offset[:-1], offset[1:], lengths, last_index):
mask = (start <= index) & (index < end)
cur_len = max(1, cur_len)
if np.sum(mask) > 0:
subind = index[mask]
end_flag = done[subind] | (subind == last)
next_index[mask] = (subind - start + 1 - end_flag) % cur_len + start
return next_index