Tianshou/test/continuous/test_redq.py

178 lines
6.2 KiB
Python
Raw Normal View History

import argparse
import os
import pprint
import gymnasium as gym
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.policy import REDQPolicy
from tianshou.trainer import offpolicy_trainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import EnsembleLinear, Net
from tianshou.utils.net.continuous import ActorProb, Critic
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='Pendulum-v1')
parser.add_argument('--reward-threshold', type=float, default=None)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--ensemble-size', type=int, default=4)
parser.add_argument('--subset-size', type=int, default=2)
parser.add_argument('--actor-lr', type=float, default=1e-4)
parser.add_argument('--critic-lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--tau', type=float, default=0.005)
parser.add_argument('--alpha', type=float, default=0.2)
parser.add_argument('--auto-alpha', action='store_true', default=False)
parser.add_argument('--alpha-lr', type=float, default=3e-4)
parser.add_argument("--start-timesteps", type=int, default=1000)
parser.add_argument('--epoch', type=int, default=5)
parser.add_argument('--step-per-epoch', type=int, default=5000)
parser.add_argument('--step-per-collect', type=int, default=1)
parser.add_argument('--update-per-step', type=int, default=3)
parser.add_argument('--n-step', type=int, default=1)
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument(
'--target-mode', type=str, choices=('min', 'mean'), default='min'
)
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64])
parser.add_argument('--training-num', type=int, default=8)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument(
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
)
args = parser.parse_known_args()[0]
return args
def test_redq(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
if args.reward_threshold is None:
default_reward_threshold = {"Pendulum-v0": -250, "Pendulum-v1": -250}
args.reward_threshold = default_reward_threshold.get(
args.task, env.spec.reward_threshold
)
# you can also use tianshou.env.SubprocVectorEnv
# train_envs = gym.make(args.task)
train_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)]
)
# test_envs = gym.make(args.task)
test_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)]
)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
actor = ActorProb(
net,
args.action_shape,
device=args.device,
unbounded=True,
conditioned_sigma=True
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
def linear(x, y):
return EnsembleLinear(args.ensemble_size, x, y)
net_c = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True,
device=args.device,
linear_layer=linear,
)
critic = Critic(
net_c, device=args.device, linear_layer=linear, flatten_input=False
).to(args.device)
critic_optim = torch.optim.Adam(critic.parameters(), lr=args.critic_lr)
if args.auto_alpha:
target_entropy = -np.prod(env.action_space.shape)
log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
args.alpha = (target_entropy, log_alpha, alpha_optim)
policy = REDQPolicy(
actor,
actor_optim,
critic,
critic_optim,
args.ensemble_size,
args.subset_size,
tau=args.tau,
gamma=args.gamma,
alpha=args.alpha,
estimation_step=args.n_step,
actor_delay=args.update_per_step,
target_mode=args.target_mode,
action_space=env.action_space,
)
# collector
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
exploration_noise=True
)
test_collector = Collector(policy, test_envs)
train_collector.collect(n_step=args.start_timesteps, random=True)
# log
log_path = os.path.join(args.logdir, args.task, 'redq')
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer)
def save_best_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(mean_rewards):
return mean_rewards >= args.reward_threshold
# trainer
result = offpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
args.step_per_collect,
args.test_num,
args.batch_size,
update_per_step=args.update_per_step,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger
)
assert stop_fn(result['best_reward'])
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
if __name__ == '__main__':
test_redq()