2020-03-19 17:23:46 +08:00
|
|
|
import time
|
|
|
|
import tqdm
|
2021-02-19 10:33:49 +08:00
|
|
|
import numpy as np
|
2021-01-20 02:13:04 -08:00
|
|
|
from collections import defaultdict
|
2020-05-12 11:31:47 +08:00
|
|
|
from torch.utils.tensorboard import SummaryWriter
|
2021-02-19 10:33:49 +08:00
|
|
|
from typing import Dict, Union, Callable, Optional
|
2020-03-19 17:23:46 +08:00
|
|
|
|
2020-05-12 11:31:47 +08:00
|
|
|
from tianshou.data import Collector
|
|
|
|
from tianshou.policy import BasePolicy
|
2020-03-19 17:23:46 +08:00
|
|
|
from tianshou.utils import tqdm_config, MovAvg
|
2020-03-20 19:52:29 +08:00
|
|
|
from tianshou.trainer import test_episode, gather_info
|
2020-03-19 17:23:46 +08:00
|
|
|
|
|
|
|
|
2020-05-12 11:31:47 +08:00
|
|
|
def onpolicy_trainer(
|
2020-09-12 15:39:01 +08:00
|
|
|
policy: BasePolicy,
|
|
|
|
train_collector: Collector,
|
|
|
|
test_collector: Collector,
|
|
|
|
max_epoch: int,
|
|
|
|
step_per_epoch: int,
|
|
|
|
collect_per_step: int,
|
|
|
|
repeat_per_collect: int,
|
2021-02-19 10:33:49 +08:00
|
|
|
episode_per_test: int,
|
2020-09-12 15:39:01 +08:00
|
|
|
batch_size: int,
|
2020-09-26 16:35:37 +08:00
|
|
|
train_fn: Optional[Callable[[int, int], None]] = None,
|
|
|
|
test_fn: Optional[Callable[[int, Optional[int]], None]] = None,
|
2020-09-12 15:39:01 +08:00
|
|
|
stop_fn: Optional[Callable[[float], bool]] = None,
|
|
|
|
save_fn: Optional[Callable[[BasePolicy], None]] = None,
|
2021-02-19 10:33:49 +08:00
|
|
|
reward_metric: Optional[Callable[[np.ndarray], np.ndarray]] = None,
|
2020-09-12 15:39:01 +08:00
|
|
|
writer: Optional[SummaryWriter] = None,
|
|
|
|
log_interval: int = 1,
|
|
|
|
verbose: bool = True,
|
|
|
|
test_in_train: bool = True,
|
2020-05-12 11:31:47 +08:00
|
|
|
) -> Dict[str, Union[float, str]]:
|
2020-09-11 07:55:37 +08:00
|
|
|
"""A wrapper for on-policy trainer procedure.
|
|
|
|
|
|
|
|
The "step" in trainer means a policy network update.
|
2020-04-05 18:34:45 +08:00
|
|
|
|
2021-02-19 10:33:49 +08:00
|
|
|
:param policy: an instance of the :class:`~tianshou.policy.BasePolicy` class.
|
2020-04-06 19:36:59 +08:00
|
|
|
:param train_collector: the collector used for training.
|
|
|
|
:type train_collector: :class:`~tianshou.data.Collector`
|
|
|
|
:param test_collector: the collector used for testing.
|
|
|
|
:type test_collector: :class:`~tianshou.data.Collector`
|
2021-01-20 02:13:04 -08:00
|
|
|
:param int max_epoch: the maximum number of epochs for training. The
|
|
|
|
training process might be finished before reaching the ``max_epoch``.
|
|
|
|
:param int step_per_epoch: the number of policy network updates, so-called
|
|
|
|
gradient steps, per epoch.
|
2020-07-27 16:54:14 +08:00
|
|
|
:param int collect_per_step: the number of episodes the collector would
|
|
|
|
collect before the network update. In other words, collect some
|
|
|
|
episodes and do one policy network update.
|
2020-04-06 19:36:59 +08:00
|
|
|
:param int repeat_per_collect: the number of repeat time for policy
|
|
|
|
learning, for example, set it to 2 means the policy needs to learn each
|
|
|
|
given batch data twice.
|
|
|
|
:param episode_per_test: the number of episodes for one policy evaluation.
|
|
|
|
:type episode_per_test: int or list of ints
|
|
|
|
:param int batch_size: the batch size of sample data, which is going to
|
|
|
|
feed in the policy network.
|
2021-01-20 02:13:04 -08:00
|
|
|
:param function train_fn: a hook called at the beginning of training in
|
|
|
|
each epoch. It can be used to perform custom additional operations,
|
|
|
|
with the signature ``f(num_epoch: int, step_idx: int) -> None``.
|
|
|
|
:param function test_fn: a hook called at the beginning of testing in each
|
|
|
|
epoch. It can be used to perform custom additional operations, with the
|
|
|
|
signature ``f(num_epoch: int, step_idx: int) -> None``.
|
|
|
|
:param function save_fn: a hook called when the undiscounted average mean
|
|
|
|
reward in evaluation phase gets better, with the signature ``f(policy:
|
|
|
|
BasePolicy) -> None``.
|
|
|
|
:param function stop_fn: a function with signature ``f(mean_rewards: float)
|
|
|
|
-> bool``, receives the average undiscounted returns of the testing
|
|
|
|
result, returns a boolean which indicates whether reaching the goal.
|
2021-02-19 10:33:49 +08:00
|
|
|
:param function reward_metric: a function with signature ``f(rewards: np.ndarray
|
|
|
|
with shape (num_episode, agent_num)) -> np.ndarray with shape (num_episode,)``,
|
|
|
|
used in multi-agent RL. We need to return a single scalar for each episode's
|
|
|
|
result to monitor training in the multi-agent RL setting. This function
|
|
|
|
specifies what is the desired metric, e.g., the reward of agent 1 or the
|
|
|
|
average reward over all agents.
|
2020-04-06 19:36:59 +08:00
|
|
|
:param torch.utils.tensorboard.SummaryWriter writer: a TensorBoard
|
2021-01-20 02:13:04 -08:00
|
|
|
SummaryWriter; if None is given, it will not write logs to TensorBoard.
|
2020-04-06 19:36:59 +08:00
|
|
|
:param int log_interval: the log interval of the writer.
|
|
|
|
:param bool verbose: whether to print the information.
|
2020-07-21 14:59:49 +08:00
|
|
|
:param bool test_in_train: whether to test in the training phase.
|
2020-04-05 18:34:45 +08:00
|
|
|
|
|
|
|
:return: See :func:`~tianshou.trainer.gather_info`.
|
|
|
|
"""
|
2020-10-04 21:55:43 +08:00
|
|
|
env_step, gradient_step = 0, 0
|
|
|
|
best_epoch, best_reward, best_reward_std = -1, -1.0, 0.0
|
2021-01-20 02:13:04 -08:00
|
|
|
stat: Dict[str, MovAvg] = defaultdict(MovAvg)
|
2020-03-19 17:23:46 +08:00
|
|
|
start_time = time.time()
|
2020-09-22 16:28:46 +08:00
|
|
|
train_collector.reset_stat()
|
|
|
|
test_collector.reset_stat()
|
2020-07-21 14:59:49 +08:00
|
|
|
test_in_train = test_in_train and train_collector.policy == policy
|
2020-03-19 17:23:46 +08:00
|
|
|
for epoch in range(1, 1 + max_epoch):
|
2020-09-12 08:44:50 +08:00
|
|
|
# train
|
|
|
|
policy.train()
|
2020-09-12 15:39:01 +08:00
|
|
|
with tqdm.tqdm(
|
|
|
|
total=step_per_epoch, desc=f"Epoch #{epoch}", **tqdm_config
|
|
|
|
) as t:
|
2020-03-19 17:23:46 +08:00
|
|
|
while t.n < t.total:
|
2020-09-26 16:35:37 +08:00
|
|
|
if train_fn:
|
2020-10-04 21:55:43 +08:00
|
|
|
train_fn(epoch, env_step)
|
2020-07-23 16:40:53 +08:00
|
|
|
result = train_collector.collect(n_episode=collect_per_step)
|
2021-02-19 10:33:49 +08:00
|
|
|
if reward_metric:
|
|
|
|
result["rews"] = reward_metric(result["rews"])
|
2020-10-04 21:55:43 +08:00
|
|
|
env_step += int(result["n/st"])
|
|
|
|
data = {
|
|
|
|
"env_step": str(env_step),
|
2021-02-19 10:33:49 +08:00
|
|
|
"rew": f"{result['rews'].mean():.2f}",
|
|
|
|
"len": str(int(result["lens"].mean())),
|
2020-10-04 21:55:43 +08:00
|
|
|
"n/ep": str(int(result["n/ep"])),
|
|
|
|
"n/st": str(int(result["n/st"])),
|
|
|
|
}
|
|
|
|
if writer and env_step % log_interval == 0:
|
2021-02-19 10:33:49 +08:00
|
|
|
writer.add_scalar(
|
|
|
|
"train/rew", result['rews'].mean(), global_step=env_step)
|
|
|
|
writer.add_scalar(
|
|
|
|
"train/len", result['lens'].mean(), global_step=env_step)
|
|
|
|
if test_in_train and stop_fn and stop_fn(result["rews"].mean()):
|
2020-03-20 19:52:29 +08:00
|
|
|
test_result = test_episode(
|
|
|
|
policy, test_collector, test_fn,
|
2020-10-04 21:55:43 +08:00
|
|
|
epoch, episode_per_test, writer, env_step)
|
2021-02-19 10:33:49 +08:00
|
|
|
if stop_fn(test_result["rews"].mean()):
|
2020-04-11 16:54:27 +08:00
|
|
|
if save_fn:
|
|
|
|
save_fn(policy)
|
2020-03-20 19:52:29 +08:00
|
|
|
t.set_postfix(**data)
|
|
|
|
return gather_info(
|
|
|
|
start_time, train_collector, test_collector,
|
2021-02-19 10:33:49 +08:00
|
|
|
test_result["rews"].mean(), test_result["rews"].std())
|
2020-03-20 19:52:29 +08:00
|
|
|
else:
|
2020-09-12 08:44:50 +08:00
|
|
|
policy.train()
|
2020-08-15 16:10:42 +08:00
|
|
|
losses = policy.update(
|
2020-09-12 15:39:01 +08:00
|
|
|
0, train_collector.buffer,
|
|
|
|
batch_size=batch_size, repeat=repeat_per_collect)
|
2020-03-19 17:23:46 +08:00
|
|
|
train_collector.reset_buffer()
|
2020-10-04 21:55:43 +08:00
|
|
|
step = max([1] + [
|
|
|
|
len(v) for v in losses.values() if isinstance(v, list)])
|
|
|
|
gradient_step += step
|
2020-03-19 17:23:46 +08:00
|
|
|
for k in losses.keys():
|
|
|
|
stat[k].add(losses[k])
|
2020-09-12 15:39:01 +08:00
|
|
|
data[k] = f"{stat[k].get():.6f}"
|
2020-10-04 21:55:43 +08:00
|
|
|
if writer and gradient_step % log_interval == 0:
|
2020-03-19 17:23:46 +08:00
|
|
|
writer.add_scalar(
|
2020-10-04 21:55:43 +08:00
|
|
|
k, stat[k].get(), global_step=gradient_step)
|
2020-03-19 17:23:46 +08:00
|
|
|
t.update(step)
|
|
|
|
t.set_postfix(**data)
|
|
|
|
if t.n <= t.total:
|
|
|
|
t.update()
|
2020-03-20 19:52:29 +08:00
|
|
|
# test
|
2020-08-27 12:15:18 +08:00
|
|
|
result = test_episode(policy, test_collector, test_fn, epoch,
|
2020-10-04 21:55:43 +08:00
|
|
|
episode_per_test, writer, env_step)
|
2021-02-19 10:33:49 +08:00
|
|
|
if best_epoch == -1 or best_reward < result["rews"].mean():
|
|
|
|
best_reward, best_reward_std = result["rews"].mean(), result["rews"].std()
|
2020-03-19 17:23:46 +08:00
|
|
|
best_epoch = epoch
|
2020-04-11 16:54:27 +08:00
|
|
|
if save_fn:
|
|
|
|
save_fn(policy)
|
2020-03-19 17:23:46 +08:00
|
|
|
if verbose:
|
2021-02-19 10:33:49 +08:00
|
|
|
print(f"Epoch #{epoch}: test_reward: {result['rews'].mean():.6f} ± "
|
|
|
|
f"{result['rews'].std():.6f}, best_reward: {best_reward:.6f} ± "
|
2020-10-04 21:55:43 +08:00
|
|
|
f"{best_reward_std:.6f} in #{best_epoch}")
|
2020-03-20 19:52:29 +08:00
|
|
|
if stop_fn and stop_fn(best_reward):
|
2020-03-19 17:23:46 +08:00
|
|
|
break
|
2020-10-04 21:55:43 +08:00
|
|
|
return gather_info(start_time, train_collector, test_collector,
|
|
|
|
best_reward, best_reward_std)
|