Tianshou/test/discrete/test_sac.py

154 lines
5.8 KiB
Python
Raw Normal View History

import argparse
import os
import pprint
import gym
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.policy import DiscreteSACPolicy
from tianshou.trainer import offpolicy_trainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import Net
from tianshou.utils.net.discrete import Actor, Critic
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='CartPole-v0')
2022-03-04 03:35:39 +01:00
parser.add_argument('--reward-threshold', type=float, default=None)
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--actor-lr', type=float, default=1e-4)
parser.add_argument('--critic-lr', type=float, default=1e-3)
parser.add_argument('--alpha-lr', type=float, default=3e-4)
parser.add_argument('--gamma', type=float, default=0.95)
parser.add_argument('--tau', type=float, default=0.005)
parser.add_argument('--alpha', type=float, default=0.05)
parser.add_argument('--auto-alpha', action="store_true", default=False)
parser.add_argument('--epoch', type=int, default=5)
parser.add_argument('--step-per-epoch', type=int, default=10000)
parser.add_argument('--step-per-collect', type=int, default=10)
parser.add_argument('--update-per-step', type=float, default=0.1)
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64])
parser.add_argument('--training-num', type=int, default=10)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.0)
parser.add_argument('--rew-norm', action="store_true", default=False)
parser.add_argument('--n-step', type=int, default=3)
parser.add_argument(
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
)
args = parser.parse_known_args()[0]
return args
def test_discrete_sac(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
2022-03-04 03:35:39 +01:00
if args.reward_threshold is None:
default_reward_threshold = {"CartPole-v0": 170} # lower the goal
2022-03-04 03:35:39 +01:00
args.reward_threshold = default_reward_threshold.get(
args.task, env.spec.reward_threshold
)
train_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)]
)
test_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)]
)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
actor = Actor(net, args.action_shape, softmax_output=False,
device=args.device).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
net_c1 = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
critic1 = Critic(net_c1, last_size=args.action_shape,
device=args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
net_c2 = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
critic2 = Critic(net_c2, last_size=args.action_shape,
device=args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
# better not to use auto alpha in CartPole
if args.auto_alpha:
target_entropy = 0.98 * np.log(np.prod(args.action_shape))
log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
args.alpha = (target_entropy, log_alpha, alpha_optim)
policy = DiscreteSACPolicy(
actor,
actor_optim,
critic1,
critic1_optim,
critic2,
critic2_optim,
args.tau,
args.gamma,
args.alpha,
estimation_step=args.n_step,
reward_normalization=args.rew_norm
)
# collector
train_collector = Collector(
policy, train_envs, VectorReplayBuffer(args.buffer_size, len(train_envs))
)
test_collector = Collector(policy, test_envs)
# train_collector.collect(n_step=args.buffer_size)
# log
log_path = os.path.join(args.logdir, args.task, 'discrete_sac')
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer)
def save_best_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(mean_rewards):
2022-03-04 03:35:39 +01:00
return mean_rewards >= args.reward_threshold
# trainer
result = offpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
args.step_per_collect,
args.test_num,
args.batch_size,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger,
update_per_step=args.update_per_step,
test_in_train=False
)
assert stop_fn(result['best_reward'])
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
if __name__ == '__main__':
test_discrete_sac()