Tianshou/test/pettingzoo/tic_tac_toe.py

242 lines
8.0 KiB
Python
Raw Normal View History

import argparse
import os
from copy import deepcopy
from typing import Optional, Tuple
import gym
import numpy as np
import torch
from pettingzoo.classic import tictactoe_v3
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.env.pettingzoo_env import PettingZooEnv
from tianshou.policy import (
BasePolicy,
DQNPolicy,
MultiAgentPolicyManager,
RandomPolicy,
)
from tianshou.trainer import offpolicy_trainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import Net
def get_env():
return PettingZooEnv(tictactoe_v3.env())
def get_parser() -> argparse.ArgumentParser:
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=1626)
parser.add_argument('--eps-test', type=float, default=0.05)
parser.add_argument('--eps-train', type=float, default=0.1)
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--lr', type=float, default=1e-4)
parser.add_argument(
'--gamma', type=float, default=0.9, help='a smaller gamma favors earlier win'
)
parser.add_argument('--n-step', type=int, default=3)
parser.add_argument('--target-update-freq', type=int, default=320)
parser.add_argument('--epoch', type=int, default=50)
parser.add_argument('--step-per-epoch', type=int, default=1000)
parser.add_argument('--step-per-collect', type=int, default=10)
parser.add_argument('--update-per-step', type=float, default=0.1)
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument(
'--hidden-sizes', type=int, nargs='*', default=[128, 128, 128, 128]
)
parser.add_argument('--training-num', type=int, default=10)
parser.add_argument('--test-num', type=int, default=10)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.1)
parser.add_argument(
'--win-rate',
type=float,
default=0.6,
help='the expected winning rate: Optimal policy can get 0.7'
)
parser.add_argument(
'--watch',
default=False,
action='store_true',
help='no training, '
'watch the play of pre-trained models'
)
parser.add_argument(
'--agent-id',
type=int,
default=2,
help='the learned agent plays as the'
' agent_id-th player. Choices are 1 and 2.'
)
parser.add_argument(
'--resume-path',
type=str,
default='',
help='the path of agent pth file '
'for resuming from a pre-trained agent'
)
parser.add_argument(
'--opponent-path',
type=str,
default='',
help='the path of opponent agent pth file '
'for resuming from a pre-trained agent'
)
parser.add_argument(
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
)
return parser
def get_args() -> argparse.Namespace:
parser = get_parser()
return parser.parse_known_args()[0]
def get_agents(
args: argparse.Namespace = get_args(),
agent_learn: Optional[BasePolicy] = None,
agent_opponent: Optional[BasePolicy] = None,
optim: Optional[torch.optim.Optimizer] = None,
) -> Tuple[BasePolicy, torch.optim.Optimizer, list]:
env = get_env()
observation_space = env.observation_space['observation'] if isinstance(
env.observation_space, gym.spaces.Dict
) else env.observation_space
args.state_shape = observation_space.shape or observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
if agent_learn is None:
# model
net = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
device=args.device
).to(args.device)
if optim is None:
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
agent_learn = DQNPolicy(
net,
optim,
args.gamma,
args.n_step,
target_update_freq=args.target_update_freq
)
if args.resume_path:
agent_learn.load_state_dict(torch.load(args.resume_path))
if agent_opponent is None:
if args.opponent_path:
agent_opponent = deepcopy(agent_learn)
agent_opponent.load_state_dict(torch.load(args.opponent_path))
else:
agent_opponent = RandomPolicy()
if args.agent_id == 1:
agents = [agent_learn, agent_opponent]
else:
agents = [agent_opponent, agent_learn]
policy = MultiAgentPolicyManager(agents, env)
return policy, optim, env.agents
def train_agent(
args: argparse.Namespace = get_args(),
agent_learn: Optional[BasePolicy] = None,
agent_opponent: Optional[BasePolicy] = None,
optim: Optional[torch.optim.Optimizer] = None,
) -> Tuple[dict, BasePolicy]:
train_envs = DummyVectorEnv([get_env for _ in range(args.training_num)])
test_envs = DummyVectorEnv([get_env for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
policy, optim, agents = get_agents(
args, agent_learn=agent_learn, agent_opponent=agent_opponent, optim=optim
)
# collector
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
exploration_noise=True
)
test_collector = Collector(policy, test_envs, exploration_noise=True)
# policy.set_eps(1)
train_collector.collect(n_step=args.batch_size * args.training_num)
# log
log_path = os.path.join(args.logdir, 'tic_tac_toe', 'dqn')
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
logger = TensorboardLogger(writer)
def save_best_fn(policy):
if hasattr(args, 'model_save_path'):
model_save_path = args.model_save_path
else:
model_save_path = os.path.join(
args.logdir, 'tic_tac_toe', 'dqn', 'policy.pth'
)
torch.save(
policy.policies[agents[args.agent_id - 1]].state_dict(), model_save_path
)
def stop_fn(mean_rewards):
return mean_rewards >= args.win_rate
def train_fn(epoch, env_step):
policy.policies[agents[args.agent_id - 1]].set_eps(args.eps_train)
def test_fn(epoch, env_step):
policy.policies[agents[args.agent_id - 1]].set_eps(args.eps_test)
def reward_metric(rews):
return rews[:, args.agent_id - 1]
# trainer
result = offpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
args.step_per_collect,
args.test_num,
args.batch_size,
train_fn=train_fn,
test_fn=test_fn,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
update_per_step=args.update_per_step,
logger=logger,
test_in_train=False,
reward_metric=reward_metric
)
return result, policy.policies[agents[args.agent_id - 1]]
def watch(
args: argparse.Namespace = get_args(),
agent_learn: Optional[BasePolicy] = None,
agent_opponent: Optional[BasePolicy] = None,
) -> None:
env = DummyVectorEnv([get_env])
policy, optim, agents = get_agents(
args, agent_learn=agent_learn, agent_opponent=agent_opponent
)
policy.eval()
policy.policies[agents[args.agent_id - 1]].set_eps(args.eps_test)
collector = Collector(policy, env, exploration_noise=True)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews[:, args.agent_id - 1].mean()}, length: {lens.mean()}")