Tianshou/tianshou/core/mcts/evaluator.py

28 lines
849 B
Python
Raw Normal View History

2017-11-17 19:35:20 +08:00
import numpy as np
2017-11-21 22:19:52 +08:00
2017-11-17 19:35:20 +08:00
class evaluator(object):
def __init__(self, env, action_num):
self.env = env
self.action_num = action_num
def __call__(self, state):
raise NotImplementedError("Need to implement the evaluator")
2017-11-21 22:19:52 +08:00
2017-11-17 19:35:20 +08:00
class rollout_policy(evaluator):
def __init__(self, env, action_num):
super(rollout_policy, self).__init__(env, action_num)
self.is_terminated = False
def __call__(self, state):
# TODO: prior for rollout policy
2017-11-21 22:19:52 +08:00
total_reward = 0
action = np.random.randint(0, self.action_num)
state, reward = self.env.step_forward(state, action)
while state is not None:
action = np.random.randint(0, self.action_num)
state, reward = self.env.step_forward(state, action)
total_reward += reward
return reward