| 
									
										
										
										
											2021-01-06 10:17:45 +08:00
										 |  |  | import os | 
					
						
							|  |  |  | import torch | 
					
						
							|  |  |  | import pprint | 
					
						
							|  |  |  | import argparse | 
					
						
							|  |  |  | import numpy as np | 
					
						
							|  |  |  | from torch.utils.tensorboard import SummaryWriter | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | from tianshou.policy import C51Policy | 
					
						
							| 
									
										
										
										
											2021-02-24 14:48:42 +08:00
										 |  |  | from tianshou.utils import BasicLogger | 
					
						
							| 
									
										
										
										
											2021-01-06 10:17:45 +08:00
										 |  |  | from tianshou.env import SubprocVectorEnv | 
					
						
							|  |  |  | from tianshou.trainer import offpolicy_trainer | 
					
						
							| 
									
										
										
										
											2021-02-19 10:33:49 +08:00
										 |  |  | from tianshou.data import Collector, VectorReplayBuffer | 
					
						
							| 
									
										
										
										
											2021-01-06 10:17:45 +08:00
										 |  |  | 
 | 
					
						
							| 
									
										
										
										
											2021-01-20 16:54:13 +08:00
										 |  |  | from atari_network import C51 | 
					
						
							| 
									
										
										
										
											2021-01-06 10:17:45 +08:00
										 |  |  | from atari_wrapper import wrap_deepmind | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def get_args(): | 
					
						
							|  |  |  |     parser = argparse.ArgumentParser() | 
					
						
							|  |  |  |     parser.add_argument('--task', type=str, default='PongNoFrameskip-v4') | 
					
						
							|  |  |  |     parser.add_argument('--seed', type=int, default=0) | 
					
						
							|  |  |  |     parser.add_argument('--eps-test', type=float, default=0.005) | 
					
						
							|  |  |  |     parser.add_argument('--eps-train', type=float, default=1.) | 
					
						
							|  |  |  |     parser.add_argument('--eps-train-final', type=float, default=0.05) | 
					
						
							|  |  |  |     parser.add_argument('--buffer-size', type=int, default=100000) | 
					
						
							|  |  |  |     parser.add_argument('--lr', type=float, default=0.0001) | 
					
						
							|  |  |  |     parser.add_argument('--gamma', type=float, default=0.99) | 
					
						
							|  |  |  |     parser.add_argument('--num-atoms', type=int, default=51) | 
					
						
							|  |  |  |     parser.add_argument('--v-min', type=float, default=-10.) | 
					
						
							|  |  |  |     parser.add_argument('--v-max', type=float, default=10.) | 
					
						
							|  |  |  |     parser.add_argument('--n-step', type=int, default=3) | 
					
						
							|  |  |  |     parser.add_argument('--target-update-freq', type=int, default=500) | 
					
						
							|  |  |  |     parser.add_argument('--epoch', type=int, default=100) | 
					
						
							| 
									
										
										
										
											2021-02-21 13:06:02 +08:00
										 |  |  |     parser.add_argument('--step-per-epoch', type=int, default=100000) | 
					
						
							|  |  |  |     parser.add_argument('--step-per-collect', type=int, default=10) | 
					
						
							|  |  |  |     parser.add_argument('--update-per-step', type=float, default=0.1) | 
					
						
							| 
									
										
										
										
											2021-01-06 10:17:45 +08:00
										 |  |  |     parser.add_argument('--batch-size', type=int, default=32) | 
					
						
							| 
									
										
										
										
											2021-02-19 10:33:49 +08:00
										 |  |  |     parser.add_argument('--training-num', type=int, default=10) | 
					
						
							| 
									
										
										
										
											2021-01-06 10:17:45 +08:00
										 |  |  |     parser.add_argument('--test-num', type=int, default=10) | 
					
						
							|  |  |  |     parser.add_argument('--logdir', type=str, default='log') | 
					
						
							|  |  |  |     parser.add_argument('--render', type=float, default=0.) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         '--device', type=str, | 
					
						
							|  |  |  |         default='cuda' if torch.cuda.is_available() else 'cpu') | 
					
						
							| 
									
										
										
										
											2021-01-20 16:54:13 +08:00
										 |  |  |     parser.add_argument('--frames-stack', type=int, default=4) | 
					
						
							|  |  |  |     parser.add_argument('--resume-path', type=str, default=None) | 
					
						
							| 
									
										
										
										
											2021-01-06 10:17:45 +08:00
										 |  |  |     parser.add_argument('--watch', default=False, action='store_true', | 
					
						
							|  |  |  |                         help='watch the play of pre-trained policy only') | 
					
						
							|  |  |  |     return parser.parse_args() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def make_atari_env(args): | 
					
						
							|  |  |  |     return wrap_deepmind(args.task, frame_stack=args.frames_stack) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def make_atari_env_watch(args): | 
					
						
							|  |  |  |     return wrap_deepmind(args.task, frame_stack=args.frames_stack, | 
					
						
							|  |  |  |                          episode_life=False, clip_rewards=False) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def test_c51(args=get_args()): | 
					
						
							|  |  |  |     env = make_atari_env(args) | 
					
						
							|  |  |  |     args.state_shape = env.observation_space.shape or env.observation_space.n | 
					
						
							|  |  |  |     args.action_shape = env.env.action_space.shape or env.env.action_space.n | 
					
						
							|  |  |  |     # should be N_FRAMES x H x W | 
					
						
							|  |  |  |     print("Observations shape:", args.state_shape) | 
					
						
							|  |  |  |     print("Actions shape:", args.action_shape) | 
					
						
							|  |  |  |     # make environments | 
					
						
							|  |  |  |     train_envs = SubprocVectorEnv([lambda: make_atari_env(args) | 
					
						
							|  |  |  |                                    for _ in range(args.training_num)]) | 
					
						
							|  |  |  |     test_envs = SubprocVectorEnv([lambda: make_atari_env_watch(args) | 
					
						
							|  |  |  |                                   for _ in range(args.test_num)]) | 
					
						
							|  |  |  |     # seed | 
					
						
							|  |  |  |     np.random.seed(args.seed) | 
					
						
							|  |  |  |     torch.manual_seed(args.seed) | 
					
						
							|  |  |  |     train_envs.seed(args.seed) | 
					
						
							|  |  |  |     test_envs.seed(args.seed) | 
					
						
							|  |  |  |     # define model | 
					
						
							|  |  |  |     net = C51(*args.state_shape, args.action_shape, | 
					
						
							|  |  |  |               args.num_atoms, args.device) | 
					
						
							|  |  |  |     optim = torch.optim.Adam(net.parameters(), lr=args.lr) | 
					
						
							|  |  |  |     # define policy | 
					
						
							|  |  |  |     policy = C51Policy( | 
					
						
							|  |  |  |         net, optim, args.gamma, args.num_atoms, args.v_min, args.v_max, | 
					
						
							|  |  |  |         args.n_step, target_update_freq=args.target_update_freq | 
					
						
							|  |  |  |     ).to(args.device) | 
					
						
							|  |  |  |     # load a previous policy | 
					
						
							|  |  |  |     if args.resume_path: | 
					
						
							| 
									
										
										
										
											2021-02-19 10:33:49 +08:00
										 |  |  |         policy.load_state_dict(torch.load(args.resume_path, map_location=args.device)) | 
					
						
							| 
									
										
										
										
											2021-01-06 10:17:45 +08:00
										 |  |  |         print("Loaded agent from: ", args.resume_path) | 
					
						
							|  |  |  |     # replay buffer: `save_last_obs` and `stack_num` can be removed together | 
					
						
							|  |  |  |     # when you have enough RAM | 
					
						
							| 
									
										
										
										
											2021-02-19 10:33:49 +08:00
										 |  |  |     buffer = VectorReplayBuffer( | 
					
						
							|  |  |  |         args.buffer_size, buffer_num=len(train_envs), ignore_obs_next=True, | 
					
						
							|  |  |  |         save_only_last_obs=True, stack_num=args.frames_stack) | 
					
						
							| 
									
										
										
										
											2021-01-06 10:17:45 +08:00
										 |  |  |     # collector | 
					
						
							| 
									
										
										
										
											2021-02-19 10:33:49 +08:00
										 |  |  |     train_collector = Collector(policy, train_envs, buffer, exploration_noise=True) | 
					
						
							|  |  |  |     test_collector = Collector(policy, test_envs, exploration_noise=True) | 
					
						
							| 
									
										
										
										
											2021-01-06 10:17:45 +08:00
										 |  |  |     # log | 
					
						
							|  |  |  |     log_path = os.path.join(args.logdir, args.task, 'c51') | 
					
						
							|  |  |  |     writer = SummaryWriter(log_path) | 
					
						
							| 
									
										
										
										
											2021-02-24 14:48:42 +08:00
										 |  |  |     writer.add_text("args", str(args)) | 
					
						
							|  |  |  |     logger = BasicLogger(writer) | 
					
						
							| 
									
										
										
										
											2021-01-06 10:17:45 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def save_fn(policy): | 
					
						
							|  |  |  |         torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def stop_fn(mean_rewards): | 
					
						
							|  |  |  |         if env.env.spec.reward_threshold: | 
					
						
							|  |  |  |             return mean_rewards >= env.spec.reward_threshold | 
					
						
							|  |  |  |         elif 'Pong' in args.task: | 
					
						
							|  |  |  |             return mean_rewards >= 20 | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             return False | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def train_fn(epoch, env_step): | 
					
						
							|  |  |  |         # nature DQN setting, linear decay in the first 1M steps | 
					
						
							|  |  |  |         if env_step <= 1e6: | 
					
						
							|  |  |  |             eps = args.eps_train - env_step / 1e6 * \ | 
					
						
							|  |  |  |                 (args.eps_train - args.eps_train_final) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             eps = args.eps_train_final | 
					
						
							|  |  |  |         policy.set_eps(eps) | 
					
						
							| 
									
										
										
										
											2021-02-24 14:48:42 +08:00
										 |  |  |         logger.write('train/eps', env_step, eps) | 
					
						
							| 
									
										
										
										
											2021-01-06 10:17:45 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def test_fn(epoch, env_step): | 
					
						
							|  |  |  |         policy.set_eps(args.eps_test) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # watch agent's performance | 
					
						
							|  |  |  |     def watch(): | 
					
						
							|  |  |  |         print("Testing agent ...") | 
					
						
							|  |  |  |         policy.eval() | 
					
						
							|  |  |  |         policy.set_eps(args.eps_test) | 
					
						
							|  |  |  |         test_envs.seed(args.seed) | 
					
						
							|  |  |  |         test_collector.reset() | 
					
						
							| 
									
										
										
										
											2021-02-19 10:33:49 +08:00
										 |  |  |         result = test_collector.collect(n_episode=args.test_num, render=args.render) | 
					
						
							| 
									
										
										
										
											2021-01-06 10:17:45 +08:00
										 |  |  |         pprint.pprint(result) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if args.watch: | 
					
						
							|  |  |  |         watch() | 
					
						
							|  |  |  |         exit(0) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # test train_collector and start filling replay buffer | 
					
						
							| 
									
										
										
										
											2021-02-19 10:33:49 +08:00
										 |  |  |     train_collector.collect(n_step=args.batch_size * args.training_num) | 
					
						
							| 
									
										
										
										
											2021-01-06 10:17:45 +08:00
										 |  |  |     # trainer | 
					
						
							|  |  |  |     result = offpolicy_trainer( | 
					
						
							|  |  |  |         policy, train_collector, test_collector, args.epoch, | 
					
						
							| 
									
										
										
										
											2021-02-21 13:06:02 +08:00
										 |  |  |         args.step_per_epoch, args.step_per_collect, args.test_num, | 
					
						
							| 
									
										
										
										
											2021-01-06 10:17:45 +08:00
										 |  |  |         args.batch_size, train_fn=train_fn, test_fn=test_fn, | 
					
						
							| 
									
										
										
										
											2021-02-24 14:48:42 +08:00
										 |  |  |         stop_fn=stop_fn, save_fn=save_fn, logger=logger, | 
					
						
							| 
									
										
										
										
											2021-02-21 13:06:02 +08:00
										 |  |  |         update_per_step=args.update_per_step, test_in_train=False) | 
					
						
							| 
									
										
										
										
											2021-01-06 10:17:45 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     pprint.pprint(result) | 
					
						
							|  |  |  |     watch() | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == '__main__': | 
					
						
							|  |  |  |     test_c51(get_args()) |