101 lines
3.9 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
import os
import re
import csv
import tqdm
import argparse
import numpy as np
from typing import Dict, List, Union
from tensorboard.backend.event_processing import event_accumulator
def find_all_files(root_dir: str, pattern: re.Pattern) -> List[str]:
"""Find all files under root_dir according to relative pattern."""
file_list = []
for dirname, _, files in os.walk(root_dir):
for f in files:
absolute_path = os.path.join(dirname, f)
if re.match(pattern, absolute_path):
file_list.append(absolute_path)
return file_list
def convert_tfevents_to_csv(
root_dir: str, refresh: bool = False
) -> Dict[str, np.ndarray]:
"""Recursively convert test/rew from all tfevent file under root_dir to csv.
This function assumes that there is at most one tfevents file in each directory
and will add suffix to that directory.
:param bool refresh: re-create csv file under any condition.
"""
tfevent_files = find_all_files(root_dir, re.compile(r"^.*tfevents.*$"))
print(f"Converting {len(tfevent_files)} tfevents files under {root_dir} ...")
result = {}
with tqdm.tqdm(tfevent_files) as t:
for tfevent_file in t:
t.set_postfix(file=tfevent_file)
output_file = os.path.join(os.path.split(tfevent_file)[0], "test_rew.csv")
if os.path.exists(output_file) and not refresh:
content = list(csv.reader(open(output_file, "r")))
if content[0] == ["env_step", "rew", "time"]:
for i in range(1, len(content)):
content[i] = list(map(eval, content[i]))
result[output_file] = content
continue
ea = event_accumulator.EventAccumulator(tfevent_file)
ea.Reload()
initial_time = ea._first_event_timestamp
content = [["env_step", "rew", "time"]]
for test_rew in ea.scalars.Items("test/rew"):
content.append([
round(test_rew.step, 4),
round(test_rew.value, 4),
round(test_rew.wall_time - initial_time, 4),
])
csv.writer(open(output_file, 'w')).writerows(content)
result[output_file] = content
return result
def merge_csv(
csv_files: List[List[Union[str, int, float]]],
root_dir: str,
remove_zero: bool = False,
) -> None:
"""Merge result in csv_files into a single csv file."""
assert len(csv_files) > 0
if remove_zero:
for k, v in csv_files.items():
if v[1][0] == 0:
v.pop(1)
sorted_keys = sorted(csv_files.keys())
sorted_values = [csv_files[k][1:] for k in sorted_keys]
content = [["env_step", "rew", "rew:shaded"] + list(map(
lambda f: "rew:" + os.path.relpath(f, root_dir), sorted_keys))]
for rows in zip(*sorted_values):
array = np.array(rows)
assert len(set(array[:, 0])) == 1, (set(array[:, 0]), array[:, 0])
line = [rows[0][0], round(array[:, 1].mean(), 4), round(array[:, 1].std(), 4)]
line += array[:, 1].tolist()
content.append(line)
output_path = os.path.join(root_dir, f"test_rew_{len(csv_files)}seeds.csv")
print(f"Output merged csv file to {output_path} with {len(content[1:])} lines.")
csv.writer(open(output_path, "w")).writerows(content)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--root-dir', type=str)
parser.add_argument(
'--refresh', action="store_true",
help="Re-generate all csv files instead of using existing one.")
parser.add_argument(
'--remove-zero', action="store_true",
help="Remove the data point of env_step == 0.")
args = parser.parse_args()
csv_files = convert_tfevents_to_csv(args.root_dir, args.refresh)
merge_csv(csv_files, args.root_dir, args.remove_zero)