113 lines
4.2 KiB
Python
113 lines
4.2 KiB
Python
|
from abc import ABC
|
||
|
from typing import Any, Dict, List, Tuple
|
||
|
|
||
|
import gym.spaces
|
||
|
from pettingzoo.utils.env import AECEnv
|
||
|
from pettingzoo.utils.wrappers import BaseWrapper
|
||
|
|
||
|
|
||
|
class PettingZooEnv(AECEnv, gym.Env, ABC):
|
||
|
"""The interface for petting zoo environments.
|
||
|
|
||
|
Multi-agent environments must be wrapped as
|
||
|
:class:`~tianshou.env.PettingZooEnv`. Here is the usage:
|
||
|
::
|
||
|
|
||
|
env = PettingZooEnv(...)
|
||
|
# obs is a dict containing obs, agent_id, and mask
|
||
|
obs = env.reset()
|
||
|
action = policy(obs)
|
||
|
obs, rew, done, info = env.step(action)
|
||
|
env.close()
|
||
|
|
||
|
The available action's mask is set to True, otherwise it is set to False.
|
||
|
Further usage can be found at :ref:`marl_example`.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, env: BaseWrapper):
|
||
|
super().__init__()
|
||
|
self.env = env
|
||
|
# agent idx list
|
||
|
self.agents = self.env.possible_agents
|
||
|
self.agent_idx = {}
|
||
|
for i, agent_id in enumerate(self.agents):
|
||
|
self.agent_idx[agent_id] = i
|
||
|
# Get dictionaries of obs_spaces and act_spaces
|
||
|
self.observation_spaces = self.env.observation_spaces
|
||
|
self.action_spaces = self.env.action_spaces
|
||
|
|
||
|
self.rewards = [0] * len(self.agents)
|
||
|
|
||
|
# Get first observation space, assuming all agents have equal space
|
||
|
self.observation_space: Any = self.observation_space(self.agents[0])
|
||
|
|
||
|
# Get first action space, assuming all agents have equal space
|
||
|
self.action_space: Any = self.action_space(self.agents[0])
|
||
|
|
||
|
assert all(self.env.observation_space(agent) == self.observation_space
|
||
|
for agent in self.agents), \
|
||
|
"Observation spaces for all agents must be identical. Perhaps " \
|
||
|
"SuperSuit's pad_observations wrapper can help (useage: " \
|
||
|
"`supersuit.aec_wrappers.pad_observations(env)`"
|
||
|
|
||
|
assert all(self.env.action_space(agent) == self.action_space
|
||
|
for agent in self.agents), \
|
||
|
"Action spaces for all agents must be identical. Perhaps " \
|
||
|
"SuperSuit's pad_action_space wrapper can help (useage: " \
|
||
|
"`supersuit.aec_wrappers.pad_action_space(env)`"
|
||
|
|
||
|
self.reset()
|
||
|
|
||
|
def reset(self) -> dict:
|
||
|
self.env.reset()
|
||
|
observation = self.env.observe(self.env.agent_selection)
|
||
|
if isinstance(observation, dict) and 'action_mask' in observation:
|
||
|
return {
|
||
|
'agent_id': self.env.agent_selection,
|
||
|
'obs': observation['observation'],
|
||
|
'mask':
|
||
|
[True if obm == 1 else False for obm in observation['action_mask']]
|
||
|
}
|
||
|
else:
|
||
|
if isinstance(self.action_space, gym.spaces.Discrete):
|
||
|
return {
|
||
|
'agent_id': self.env.agent_selection,
|
||
|
'obs': observation,
|
||
|
'mask': [True] * self.env.action_space(self.env.agent_selection).n
|
||
|
}
|
||
|
else:
|
||
|
return {'agent_id': self.env.agent_selection, 'obs': observation}
|
||
|
|
||
|
def step(self, action: Any) -> Tuple[Dict, List[int], bool, Dict]:
|
||
|
self.env.step(action)
|
||
|
observation, rew, done, info = self.env.last()
|
||
|
if isinstance(observation, dict) and 'action_mask' in observation:
|
||
|
obs = {
|
||
|
'agent_id': self.env.agent_selection,
|
||
|
'obs': observation['observation'],
|
||
|
'mask':
|
||
|
[True if obm == 1 else False for obm in observation['action_mask']]
|
||
|
}
|
||
|
else:
|
||
|
if isinstance(self.action_space, gym.spaces.Discrete):
|
||
|
obs = {
|
||
|
'agent_id': self.env.agent_selection,
|
||
|
'obs': observation,
|
||
|
'mask': [True] * self.env.action_space(self.env.agent_selection).n
|
||
|
}
|
||
|
else:
|
||
|
obs = {'agent_id': self.env.agent_selection, 'obs': observation}
|
||
|
|
||
|
for agent_id, reward in self.env.rewards.items():
|
||
|
self.rewards[self.agent_idx[agent_id]] = reward
|
||
|
return obs, self.rewards, done, info
|
||
|
|
||
|
def close(self) -> None:
|
||
|
self.env.close()
|
||
|
|
||
|
def seed(self, seed: Any = None) -> None:
|
||
|
self.env.seed(seed)
|
||
|
|
||
|
def render(self, mode: str = "human") -> Any:
|
||
|
return self.env.render(mode)
|