2017-12-08 21:09:23 +08:00
|
|
|
#!/usr/bin/env python
|
|
|
|
# -*- coding: utf-8 -*-
|
|
|
|
|
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import tensorflow as tf
|
|
|
|
|
|
|
|
from .base import StochasticPolicy
|
|
|
|
|
|
|
|
|
|
|
|
class OnehotCategorical(StochasticPolicy):
|
|
|
|
"""
|
|
|
|
The class of one-hot Categorical distribution.
|
|
|
|
See :class:`~zhusuan.distributions.base.Distribution` for details.
|
|
|
|
|
|
|
|
:param logits: A N-D (N >= 1) `float` Tensor of shape (...,
|
|
|
|
n_categories). Each slice `[i, j, ..., k, :]` represents the
|
|
|
|
un-normalized log probabilities for all categories.
|
|
|
|
|
|
|
|
.. math:: \\mathrm{logits} \\propto \\log p
|
|
|
|
|
|
|
|
:param dtype: The value type of samples from the distribution.
|
|
|
|
:param group_ndims: A 0-D `int32` Tensor representing the number of
|
|
|
|
dimensions in `batch_shape` (counted from the end) that are grouped
|
|
|
|
into a single event, so that their probabilities are calculated
|
|
|
|
together. Default is 0, which means a single value is an event.
|
|
|
|
See :class:`~zhusuan.distributions.base.Distribution` for more detailed
|
|
|
|
explanation.
|
|
|
|
|
|
|
|
A single sample is a N-D Tensor with the same shape as logits. Each slice
|
|
|
|
`[i, j, ..., k, :]` is a one-hot vector of the selected category.
|
|
|
|
"""
|
|
|
|
|
2017-12-10 17:23:13 +08:00
|
|
|
def __init__(self, logits, observation_placeholder, dtype=None, group_ndims=0, **kwargs):
|
2017-12-08 21:09:23 +08:00
|
|
|
self._logits = tf.convert_to_tensor(logits)
|
|
|
|
|
|
|
|
if dtype is None:
|
|
|
|
dtype = tf.int32
|
|
|
|
# assert_same_float_and_int_dtype([], dtype)
|
|
|
|
|
|
|
|
tf.assert_rank(self._logits, rank=2) # TODO: flexible policy output rank?
|
|
|
|
self._n_categories = self._logits.get_shape()[-1].value
|
|
|
|
|
|
|
|
super(OnehotCategorical, self).__init__(
|
|
|
|
act_dtype=dtype,
|
|
|
|
param_dtype=self._logits.dtype,
|
|
|
|
is_continuous=False,
|
2017-12-10 17:23:13 +08:00
|
|
|
observation_placeholder=observation_placeholder,
|
2017-12-08 21:09:23 +08:00
|
|
|
group_ndims=group_ndims,
|
|
|
|
**kwargs)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def logits(self):
|
|
|
|
"""The un-normalized log probabilities."""
|
|
|
|
return self._logits
|
|
|
|
|
|
|
|
@property
|
|
|
|
def n_categories(self):
|
|
|
|
"""The number of categories in the distribution."""
|
|
|
|
return self._n_categories
|
|
|
|
|
|
|
|
def _act(self, observation):
|
2018-01-02 19:40:37 +08:00
|
|
|
# TODO: this may be ugly. also maybe huge problem when parallel
|
|
|
|
sess = tf.get_default_session()
|
2017-12-13 20:47:45 +08:00
|
|
|
# observation[None] adds one dimension at the beginning
|
2018-01-02 19:40:37 +08:00
|
|
|
sampled_action = sess.run(tf.multinomial(self.logits, num_samples=1),
|
|
|
|
feed_dict={self._observation_placeholder: observation[None]})
|
2017-12-08 21:09:23 +08:00
|
|
|
|
|
|
|
sampled_action = sampled_action[0, 0]
|
|
|
|
|
|
|
|
return sampled_action
|
|
|
|
|
|
|
|
def _log_prob(self, sampled_action):
|
|
|
|
return -tf.nn.sparse_softmax_cross_entropy_with_logits(labels=sampled_action, logits=self.logits)
|
|
|
|
|
|
|
|
|
|
|
|
def _prob(self, sampled_action):
|
|
|
|
return tf.exp(self._log_prob(sampled_action))
|
|
|
|
|
|
|
|
|
2018-01-02 19:40:37 +08:00
|
|
|
OnehotDiscrete = OnehotCategorical
|
|
|
|
|
|
|
|
|
|
|
|
class Normal(StochasticPolicy):
|
|
|
|
"""
|
|
|
|
The :class:`Normal' class is the Normal policy
|
|
|
|
|
|
|
|
:param mean:
|
|
|
|
:param std:
|
|
|
|
:param group_ndims
|
|
|
|
:param observation_placeholder
|
|
|
|
"""
|
|
|
|
def __init__(self,
|
|
|
|
mean = 0.,
|
|
|
|
logstd = 1.,
|
|
|
|
group_ndims = 1,
|
|
|
|
observation_placeholder = None,
|
|
|
|
**kwargs):
|
|
|
|
|
|
|
|
self._mean = tf.convert_to_tensor(mean, dtype = tf.float32)
|
|
|
|
self._logstd = tf.convert_to_tensor(logstd, dtype = tf.float32)
|
|
|
|
self._std = tf.exp(self._logstd)
|
|
|
|
|
|
|
|
super(Normal, self).__init__(
|
|
|
|
act_dtype = tf.float32,
|
|
|
|
param_dtype = tf.float32,
|
|
|
|
is_continuous = True,
|
|
|
|
observation_placeholder = observation_placeholder,
|
|
|
|
group_ndims = group_ndims,
|
|
|
|
**kwargs)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def mean(self):
|
|
|
|
return self._mean
|
|
|
|
|
|
|
|
@property
|
|
|
|
def std(self):
|
|
|
|
return self._std
|
|
|
|
|
|
|
|
@property
|
|
|
|
def logstd(self):
|
|
|
|
return self._logstd
|
|
|
|
|
|
|
|
def _act(self, observation):
|
|
|
|
# TODO: getting session like this maybe ugly. also maybe huge problem when parallel
|
|
|
|
sess = tf.get_default_session()
|
|
|
|
mean, std = self._mean, self._std
|
|
|
|
shape = tf.broadcast_dynamic_shape(tf.shape(self._mean),\
|
|
|
|
tf.shape(self._std))
|
|
|
|
|
|
|
|
|
|
|
|
# observation[None] adds one dimension at the beginning
|
|
|
|
sampled_action = sess.run(tf.random_normal(tf.concat([[1], shape], 0),
|
|
|
|
dtype = tf.float32) * std + mean,
|
|
|
|
feed_dict={self._observation_placeholder: observation[None]})
|
|
|
|
sampled_action = sampled_action[0, 0]
|
|
|
|
return sampled_action
|
|
|
|
|
|
|
|
|
|
|
|
def _log_prob(self, sampled_action):
|
|
|
|
mean, logstd = self._mean, self._logstd
|
|
|
|
c = -0.5 * np.log(2 * np.pi)
|
|
|
|
precision = tf.exp(-2 * logstd)
|
|
|
|
return c - logstd - 0.5 * precision * tf.square(sampled_action - mean)
|
|
|
|
|
|
|
|
def _prob(self, sampled_action):
|
|
|
|
return tf.exp(self._log_prob(sampled_action))
|