2020-03-14 21:48:31 +08:00
|
|
|
import torch
|
2020-03-13 17:49:22 +08:00
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
2020-03-11 09:09:56 +08:00
|
|
|
class Batch(object):
|
2020-04-03 21:28:12 +08:00
|
|
|
"""
|
|
|
|
Tianshou provides :class:`~tianshou.data.Batch` as the internal data
|
|
|
|
structure to pass any kind of data to other methods, for example, a
|
|
|
|
collector gives a :class:`~tianshou.data.Batch` to policy for learning.
|
|
|
|
Here is the usage:
|
|
|
|
::
|
|
|
|
|
|
|
|
>>> import numpy as np
|
|
|
|
>>> from tianshou.data import Batch
|
|
|
|
>>> data = Batch(a=4, b=[5, 5], c='2312312')
|
|
|
|
>>> data.b
|
|
|
|
[5, 5]
|
|
|
|
>>> data.b = np.array([3, 4, 5])
|
|
|
|
>>> len(data.b)
|
|
|
|
3
|
|
|
|
>>> data.b[-1]
|
|
|
|
5
|
|
|
|
|
|
|
|
In short, you can define a :class:`Batch` with any key-value pair. The
|
|
|
|
current implementation of Tianshou typically use 6 keys in
|
|
|
|
:class:`~tianshou.data.Batch`:
|
|
|
|
|
|
|
|
* ``obs``: the observation of step :math:`t` ;
|
|
|
|
* ``act``: the action of step :math:`t` ;
|
|
|
|
* ``rew``: the reward of step :math:`t` ;
|
|
|
|
* ``done``: the done flag of step :math:`t` ;
|
|
|
|
* ``obs_next``: the observation of step :math:`t+1` ;
|
|
|
|
* ``info``: the info of step :math:`t` (in ``gym.Env``, the ``env.step()``\
|
|
|
|
function return 4 arguments, and the last one is ``info``);
|
|
|
|
|
|
|
|
:class:`~tianshou.data.Batch` has other methods, including
|
|
|
|
:meth:`~tianshou.data.Batch.__getitem__`,
|
|
|
|
:meth:`~tianshou.data.Batch.__len__`,
|
|
|
|
:meth:`~tianshou.data.Batch.append`,
|
|
|
|
and :meth:`~tianshou.data.Batch.split`:
|
|
|
|
::
|
|
|
|
|
|
|
|
>>> data = Batch(obs=np.array([0, 11, 22]), rew=np.array([6, 6, 6]))
|
|
|
|
>>> # here we test __getitem__
|
|
|
|
>>> index = [2, 1]
|
|
|
|
>>> data[index].obs
|
|
|
|
array([22, 11])
|
|
|
|
|
|
|
|
>>> # here we test __len__
|
|
|
|
>>> len(data)
|
|
|
|
3
|
|
|
|
|
|
|
|
>>> data.append(data) # similar to list.append
|
|
|
|
>>> data.obs
|
|
|
|
array([0, 11, 22, 0, 11, 22])
|
|
|
|
|
|
|
|
>>> # split whole data into multiple small batch
|
|
|
|
>>> for d in data.split(size=2, permute=False):
|
|
|
|
... print(d.obs, d.rew)
|
|
|
|
[ 0 11] [6 6]
|
|
|
|
[22 0] [6 6]
|
|
|
|
[11 22] [6 6]
|
|
|
|
"""
|
2020-03-13 17:49:22 +08:00
|
|
|
|
2020-03-11 09:09:56 +08:00
|
|
|
def __init__(self, **kwargs):
|
|
|
|
super().__init__()
|
2020-03-12 22:20:33 +08:00
|
|
|
self.__dict__.update(kwargs)
|
|
|
|
|
2020-03-14 21:48:31 +08:00
|
|
|
def __getitem__(self, index):
|
2020-04-04 21:02:06 +08:00
|
|
|
"""Return self[index]."""
|
2020-03-14 21:48:31 +08:00
|
|
|
b = Batch()
|
|
|
|
for k in self.__dict__.keys():
|
|
|
|
if self.__dict__[k] is not None:
|
2020-04-03 21:28:12 +08:00
|
|
|
b.__dict__.update(**{k: self.__dict__[k][index]})
|
2020-03-14 21:48:31 +08:00
|
|
|
return b
|
|
|
|
|
2020-03-13 17:49:22 +08:00
|
|
|
def append(self, batch):
|
2020-04-04 21:02:06 +08:00
|
|
|
"""Append a :class:`~tianshou.data.Batch` object to the end."""
|
2020-03-13 17:49:22 +08:00
|
|
|
assert isinstance(batch, Batch), 'Only append Batch is allowed!'
|
|
|
|
for k in batch.__dict__.keys():
|
|
|
|
if batch.__dict__[k] is None:
|
|
|
|
continue
|
|
|
|
if not hasattr(self, k) or self.__dict__[k] is None:
|
|
|
|
self.__dict__[k] = batch.__dict__[k]
|
|
|
|
elif isinstance(batch.__dict__[k], np.ndarray):
|
|
|
|
self.__dict__[k] = np.concatenate([
|
|
|
|
self.__dict__[k], batch.__dict__[k]])
|
2020-03-14 21:48:31 +08:00
|
|
|
elif isinstance(batch.__dict__[k], torch.Tensor):
|
|
|
|
self.__dict__[k] = torch.cat([
|
|
|
|
self.__dict__[k], batch.__dict__[k]])
|
2020-03-13 17:49:22 +08:00
|
|
|
elif isinstance(batch.__dict__[k], list):
|
|
|
|
self.__dict__[k] += batch.__dict__[k]
|
|
|
|
else:
|
2020-03-28 09:43:35 +08:00
|
|
|
s = 'No support for append with type'\
|
|
|
|
+ str(type(batch.__dict__[k]))\
|
|
|
|
+ 'in class Batch.'
|
|
|
|
raise TypeError(s)
|
2020-03-17 11:37:31 +08:00
|
|
|
|
2020-04-03 21:28:12 +08:00
|
|
|
def __len__(self):
|
2020-04-04 21:02:06 +08:00
|
|
|
"""Return len(self)."""
|
2020-04-03 21:28:12 +08:00
|
|
|
return min([
|
2020-03-17 11:37:31 +08:00
|
|
|
len(self.__dict__[k]) for k in self.__dict__.keys()
|
|
|
|
if self.__dict__[k] is not None])
|
2020-04-03 21:28:12 +08:00
|
|
|
|
|
|
|
def split(self, size=None, permute=True):
|
|
|
|
"""
|
|
|
|
Split whole data into multiple small batch.
|
|
|
|
|
|
|
|
:param size: if equals to ``None``, it does not split the data batch; \
|
|
|
|
otherwise it will divide the data batch with the given size.
|
|
|
|
:param permute: randomly shuffle the entire data batch if it equals to\
|
|
|
|
``True``, otherwise remain in the same.
|
|
|
|
"""
|
|
|
|
length = len(self)
|
2020-03-17 11:37:31 +08:00
|
|
|
if size is None:
|
|
|
|
size = length
|
|
|
|
temp = 0
|
2020-03-20 19:52:29 +08:00
|
|
|
if permute:
|
|
|
|
index = np.random.permutation(length)
|
|
|
|
else:
|
|
|
|
index = np.arange(length)
|
2020-03-17 11:37:31 +08:00
|
|
|
while temp < length:
|
2020-03-20 19:52:29 +08:00
|
|
|
yield self[index[temp:temp + size]]
|
2020-03-17 11:37:31 +08:00
|
|
|
temp += size
|