Tianshou/examples/mujoco/mujoco_td3.py

147 lines
6.2 KiB
Python
Raw Normal View History

#!/usr/bin/env python3
import os
import gym
import torch
import datetime
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import TD3Policy
from tianshou.utils import BasicLogger
from tianshou.env import SubprocVectorEnv
from tianshou.utils.net.common import Net
from tianshou.exploration import GaussianNoise
from tianshou.trainer import offpolicy_trainer
from tianshou.utils.net.continuous import Actor, Critic
from tianshou.data import Collector, ReplayBuffer, VectorReplayBuffer
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='Ant-v3')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--buffer-size', type=int, default=1000000)
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[256, 256])
parser.add_argument('--actor-lr', type=float, default=3e-4)
parser.add_argument('--critic-lr', type=float, default=3e-4)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--tau', type=float, default=0.005)
parser.add_argument('--exploration-noise', type=float, default=0.1)
parser.add_argument('--policy-noise', type=float, default=0.2)
parser.add_argument('--noise-clip', type=float, default=0.5)
parser.add_argument('--update-actor-freq', type=int, default=2)
parser.add_argument("--start-timesteps", type=int, default=25000)
parser.add_argument('--epoch', type=int, default=200)
parser.add_argument('--step-per-epoch', type=int, default=5000)
parser.add_argument('--step-per-collect', type=int, default=1)
parser.add_argument('--update-per-step', type=int, default=1)
parser.add_argument('--n-step', type=int, default=1)
parser.add_argument('--batch-size', type=int, default=256)
parser.add_argument('--training-num', type=int, default=1)
parser.add_argument('--test-num', type=int, default=10)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
parser.add_argument('--resume-path', type=str, default=None)
return parser.parse_args()
def test_td3(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
args.exploration_noise = args.exploration_noise * args.max_action
args.policy_noise = args.policy_noise * args.max_action
args.noise_clip = args.noise_clip * args.max_action
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
print("Action range:", np.min(env.action_space.low),
np.max(env.action_space.high))
# train_envs = gym.make(args.task)
if args.training_num > 1:
train_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)])
else:
train_envs = gym.make(args.task)
# test_envs = gym.make(args.task)
test_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net_a = Net(args.state_shape, hidden_sizes=args.hidden_sizes, device=args.device)
actor = Actor(
net_a, args.action_shape, max_action=args.max_action,
device=args.device).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
net_c1 = Net(args.state_shape, args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True, device=args.device)
net_c2 = Net(args.state_shape, args.action_shape,
hidden_sizes=args.hidden_sizes,
concat=True, device=args.device)
critic1 = Critic(net_c1, device=args.device).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
critic2 = Critic(net_c2, device=args.device).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
policy = TD3Policy(
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
tau=args.tau, gamma=args.gamma,
exploration_noise=GaussianNoise(sigma=args.exploration_noise),
policy_noise=args.policy_noise, update_actor_freq=args.update_actor_freq,
noise_clip=args.noise_clip, estimation_step=args.n_step,
action_space=env.action_space)
# load a previous policy
if args.resume_path:
policy.load_state_dict(torch.load(
args.resume_path, map_location=args.device
))
print("Loaded agent from: ", args.resume_path)
# collector
if args.training_num > 1:
buffer = VectorReplayBuffer(args.buffer_size, len(train_envs))
else:
buffer = ReplayBuffer(args.buffer_size)
train_collector = Collector(policy, train_envs, buffer, exploration_noise=True)
test_collector = Collector(policy, test_envs)
train_collector.collect(n_step=args.start_timesteps, random=True)
# log
2021-03-28 13:12:43 +08:00
t0 = datetime.datetime.now().strftime("%m%d_%H%M%S")
log_file = f'seed_{args.seed}_{t0}-{args.task.replace("-", "_")}_td3'
log_path = os.path.join(args.logdir, args.task, 'td3', log_file)
writer = SummaryWriter(log_path)
writer.add_text("args", str(args))
logger = BasicLogger(writer)
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
# trainer
result = offpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.step_per_collect, args.test_num,
args.batch_size, save_fn=save_fn, logger=logger,
update_per_step=args.update_per_step, test_in_train=False)
# Let's watch its performance!
policy.eval()
test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=args.test_num, render=args.render)
print(f'Final reward: {result["rews"].mean()}, length: {result["lens"].mean()}')
if __name__ == '__main__':
test_td3()