Tianshou/examples/ddpg.py

120 lines
4.1 KiB
Python
Raw Normal View History

#!/usr/bin/env python
from __future__ import absolute_import
import tensorflow as tf
import gym
import numpy as np
import time
2018-02-28 18:44:06 +08:00
import argparse
import logging
logging.basicConfig(level=logging.INFO)
# our lib imports here! It's ok to append path in examples
import sys
sys.path.append('..')
from tianshou.core import losses
import tianshou.data.advantage_estimation as advantage_estimation
import tianshou.core.policy as policy
import tianshou.core.value_function.action_value as value_function
import tianshou.core.opt as opt
from tianshou.data.data_buffer.vanilla import VanillaReplayBuffer
from tianshou.data.data_collector import DataCollector
from tianshou.data.tester import test_policy_in_env
from tianshou.core.utils import get_soft_update_op
if __name__ == '__main__':
2018-02-28 18:44:06 +08:00
parser = argparse.ArgumentParser()
parser.add_argument("--render", action="store_true", default=False)
args = parser.parse_args()
2018-03-28 18:47:41 +08:00
env = gym.make('Pendulum-v0')
observation_dim = env.observation_space.shape
action_dim = env.action_space.shape
batch_size = 32
2018-03-28 18:47:41 +08:00
seed = 123
np.random.seed(seed)
tf.set_random_seed(seed)
env.seed(seed)
### 1. build network with pure tf
observation_ph = tf.placeholder(tf.float32, shape=(None,) + observation_dim)
action_ph = tf.placeholder(tf.float32, shape=(None,) + action_dim)
def my_network():
net = tf.layers.dense(observation_ph, 32, activation=tf.nn.relu)
net = tf.layers.dense(net, 32, activation=tf.nn.relu)
action = tf.layers.dense(net, action_dim[0], activation=None)
action_value_input = tf.concat([observation_ph, action_ph], axis=1)
net = tf.layers.dense(action_value_input, 64, activation=tf.nn.relu)
net = tf.layers.dense(net, 64, activation=tf.nn.relu)
action_value = tf.layers.dense(net, 1, activation=None)
return action, action_value
### 2. build policy, loss, optimizer
actor = policy.Deterministic(my_network, observation_placeholder=observation_ph,
has_old_net=True)
critic = value_function.ActionValue(my_network, observation_placeholder=observation_ph,
action_placeholder=action_ph, has_old_net=True)
soft_update_op = get_soft_update_op(1e-2, [actor, critic])
critic_loss = losses.value_mse(critic)
critic_optimizer = tf.train.AdamOptimizer(1e-3)
critic_train_op = critic_optimizer.minimize(critic_loss, var_list=list(critic.trainable_variables))
dpg_grads_vars = opt.DPG(actor, critic)
2018-03-28 18:47:41 +08:00
actor_optimizer = tf.train.AdamOptimizer(1e-3)
actor_train_op = actor_optimizer.apply_gradients(dpg_grads_vars)
### 3. define data collection
data_buffer = VanillaReplayBuffer(capacity=10000, nstep=1)
process_functions = [advantage_estimation.ddpg_return(actor, critic)]
data_collector = DataCollector(
env=env,
policy=actor,
data_buffer=data_buffer,
process_functions=process_functions,
managed_networks=[actor, critic]
)
### 4. start training
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
# assign actor to pi_old
actor.sync_weights()
critic.sync_weights()
start_time = time.time()
data_collector.collect(num_timesteps=5000) # warm-up
for i in range(int(1e8)):
# collect data
2018-03-28 18:47:41 +08:00
data_collector.collect(num_timesteps=1, episode_cutoff=200)
# train critic
feed_dict = data_collector.next_batch(batch_size)
sess.run(critic_train_op, feed_dict=feed_dict)
# recompute action
data_collector.denoise_action(feed_dict)
# train actor
sess.run(actor_train_op, feed_dict=feed_dict)
# update target networks
sess.run(soft_update_op)
# test every 1000 training steps
if i % 1000 == 0:
print('Step {}, elapsed time: {:.1f} min'.format(i, (time.time() - start_time) / 60))
2018-03-28 18:47:41 +08:00
test_policy_in_env(actor, env, num_episodes=5, episode_cutoff=200)