228 lines
7.5 KiB
Python
228 lines
7.5 KiB
Python
|
#!/usr/bin/env python3
|
||
|
|
||
|
import argparse
|
||
|
import datetime
|
||
|
import os
|
||
|
import pprint
|
||
|
|
||
|
import gym
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
from torch.utils.tensorboard import SummaryWriter
|
||
|
|
||
|
from examples.offline.utils import load_buffer_d4rl, normalize_all_obs_in_replay_buffer
|
||
|
from tianshou.data import Collector
|
||
|
from tianshou.env import SubprocVectorEnv, VectorEnvNormObs
|
||
|
from tianshou.exploration import GaussianNoise
|
||
|
from tianshou.policy import TD3BCPolicy
|
||
|
from tianshou.trainer import offline_trainer
|
||
|
from tianshou.utils import TensorboardLogger, WandbLogger
|
||
|
from tianshou.utils.net.common import Net
|
||
|
from tianshou.utils.net.continuous import Actor, Critic
|
||
|
|
||
|
|
||
|
def get_args():
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument("--task", type=str, default="HalfCheetah-v2")
|
||
|
parser.add_argument("--seed", type=int, default=0)
|
||
|
parser.add_argument(
|
||
|
"--expert-data-task", type=str, default="halfcheetah-expert-v2"
|
||
|
)
|
||
|
parser.add_argument("--buffer-size", type=int, default=1000000)
|
||
|
parser.add_argument("--hidden-sizes", type=int, nargs="*", default=[256, 256])
|
||
|
parser.add_argument("--actor-lr", type=float, default=3e-4)
|
||
|
parser.add_argument("--critic-lr", type=float, default=3e-4)
|
||
|
parser.add_argument("--epoch", type=int, default=200)
|
||
|
parser.add_argument("--step-per-epoch", type=int, default=5000)
|
||
|
parser.add_argument("--n-step", type=int, default=3)
|
||
|
parser.add_argument("--batch-size", type=int, default=256)
|
||
|
|
||
|
parser.add_argument("--alpha", type=float, default=2.5)
|
||
|
parser.add_argument("--exploration-noise", type=float, default=0.1)
|
||
|
parser.add_argument("--policy-noise", type=float, default=0.2)
|
||
|
parser.add_argument("--noise-clip", type=float, default=0.5)
|
||
|
parser.add_argument("--update-actor-freq", type=int, default=2)
|
||
|
parser.add_argument("--tau", type=float, default=0.005)
|
||
|
parser.add_argument("--gamma", type=float, default=0.99)
|
||
|
parser.add_argument("--norm-obs", type=int, default=1)
|
||
|
|
||
|
parser.add_argument("--eval-freq", type=int, default=1)
|
||
|
parser.add_argument("--test-num", type=int, default=10)
|
||
|
parser.add_argument("--logdir", type=str, default="log")
|
||
|
parser.add_argument("--render", type=float, default=1 / 35)
|
||
|
parser.add_argument(
|
||
|
"--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu"
|
||
|
)
|
||
|
parser.add_argument("--resume-path", type=str, default=None)
|
||
|
parser.add_argument("--resume-id", type=str, default=None)
|
||
|
parser.add_argument(
|
||
|
"--logger",
|
||
|
type=str,
|
||
|
default="tensorboard",
|
||
|
choices=["tensorboard", "wandb"],
|
||
|
)
|
||
|
parser.add_argument("--wandb-project", type=str, default="offline_d4rl.benchmark")
|
||
|
parser.add_argument(
|
||
|
"--watch",
|
||
|
default=False,
|
||
|
action="store_true",
|
||
|
help="watch the play of pre-trained policy only",
|
||
|
)
|
||
|
return parser.parse_args()
|
||
|
|
||
|
|
||
|
def test_td3_bc():
|
||
|
args = get_args()
|
||
|
env = gym.make(args.task)
|
||
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
||
|
args.action_shape = env.action_space.shape or env.action_space.n
|
||
|
args.max_action = env.action_space.high[0] # float
|
||
|
print("device:", args.device)
|
||
|
print("Observations shape:", args.state_shape)
|
||
|
print("Actions shape:", args.action_shape)
|
||
|
print("Action range:", np.min(env.action_space.low), np.max(env.action_space.high))
|
||
|
|
||
|
args.state_dim = args.state_shape[0]
|
||
|
args.action_dim = args.action_shape[0]
|
||
|
print("Max_action", args.max_action)
|
||
|
|
||
|
test_envs = SubprocVectorEnv(
|
||
|
[lambda: gym.make(args.task) for _ in range(args.test_num)]
|
||
|
)
|
||
|
if args.norm_obs:
|
||
|
test_envs = VectorEnvNormObs(test_envs, update_obs_rms=False)
|
||
|
|
||
|
# seed
|
||
|
np.random.seed(args.seed)
|
||
|
torch.manual_seed(args.seed)
|
||
|
test_envs.seed(args.seed)
|
||
|
|
||
|
# model
|
||
|
# actor network
|
||
|
net_a = Net(
|
||
|
args.state_shape,
|
||
|
hidden_sizes=args.hidden_sizes,
|
||
|
device=args.device,
|
||
|
)
|
||
|
actor = Actor(
|
||
|
net_a,
|
||
|
action_shape=args.action_shape,
|
||
|
max_action=args.max_action,
|
||
|
device=args.device,
|
||
|
).to(args.device)
|
||
|
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
|
||
|
|
||
|
# critic network
|
||
|
net_c1 = Net(
|
||
|
args.state_shape,
|
||
|
args.action_shape,
|
||
|
hidden_sizes=args.hidden_sizes,
|
||
|
concat=True,
|
||
|
device=args.device,
|
||
|
)
|
||
|
net_c2 = Net(
|
||
|
args.state_shape,
|
||
|
args.action_shape,
|
||
|
hidden_sizes=args.hidden_sizes,
|
||
|
concat=True,
|
||
|
device=args.device,
|
||
|
)
|
||
|
critic1 = Critic(net_c1, device=args.device).to(args.device)
|
||
|
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
|
||
|
critic2 = Critic(net_c2, device=args.device).to(args.device)
|
||
|
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
|
||
|
|
||
|
policy = TD3BCPolicy(
|
||
|
actor,
|
||
|
actor_optim,
|
||
|
critic1,
|
||
|
critic1_optim,
|
||
|
critic2,
|
||
|
critic2_optim,
|
||
|
tau=args.tau,
|
||
|
gamma=args.gamma,
|
||
|
exploration_noise=GaussianNoise(sigma=args.exploration_noise),
|
||
|
policy_noise=args.policy_noise,
|
||
|
update_actor_freq=args.update_actor_freq,
|
||
|
noise_clip=args.noise_clip,
|
||
|
alpha=args.alpha,
|
||
|
estimation_step=args.n_step,
|
||
|
action_space=env.action_space,
|
||
|
)
|
||
|
|
||
|
# load a previous policy
|
||
|
if args.resume_path:
|
||
|
policy.load_state_dict(torch.load(args.resume_path, map_location=args.device))
|
||
|
print("Loaded agent from: ", args.resume_path)
|
||
|
|
||
|
# collector
|
||
|
test_collector = Collector(policy, test_envs)
|
||
|
|
||
|
# log
|
||
|
now = datetime.datetime.now().strftime("%y%m%d-%H%M%S")
|
||
|
args.algo_name = "td3_bc"
|
||
|
log_name = os.path.join(args.task, args.algo_name, str(args.seed), now)
|
||
|
log_path = os.path.join(args.logdir, log_name)
|
||
|
|
||
|
# logger
|
||
|
if args.logger == "wandb":
|
||
|
logger = WandbLogger(
|
||
|
save_interval=1,
|
||
|
name=log_name.replace(os.path.sep, "__"),
|
||
|
run_id=args.resume_id,
|
||
|
config=args,
|
||
|
project=args.wandb_project,
|
||
|
)
|
||
|
writer = SummaryWriter(log_path)
|
||
|
writer.add_text("args", str(args))
|
||
|
if args.logger == "tensorboard":
|
||
|
logger = TensorboardLogger(writer)
|
||
|
else: # wandb
|
||
|
logger.load(writer)
|
||
|
|
||
|
def save_best_fn(policy):
|
||
|
torch.save(policy.state_dict(), os.path.join(log_path, "policy.pth"))
|
||
|
|
||
|
def watch():
|
||
|
if args.resume_path is None:
|
||
|
args.resume_path = os.path.join(log_path, "policy.pth")
|
||
|
|
||
|
policy.load_state_dict(
|
||
|
torch.load(args.resume_path, map_location=torch.device("cpu"))
|
||
|
)
|
||
|
policy.eval()
|
||
|
collector = Collector(policy, env)
|
||
|
collector.collect(n_episode=1, render=1 / 35)
|
||
|
|
||
|
if not args.watch:
|
||
|
replay_buffer = load_buffer_d4rl(args.expert_data_task)
|
||
|
if args.norm_obs:
|
||
|
replay_buffer, obs_rms = normalize_all_obs_in_replay_buffer(replay_buffer)
|
||
|
test_envs.set_obs_rms(obs_rms)
|
||
|
# trainer
|
||
|
result = offline_trainer(
|
||
|
policy,
|
||
|
replay_buffer,
|
||
|
test_collector,
|
||
|
args.epoch,
|
||
|
args.step_per_epoch,
|
||
|
args.test_num,
|
||
|
args.batch_size,
|
||
|
save_best_fn=save_best_fn,
|
||
|
logger=logger,
|
||
|
)
|
||
|
pprint.pprint(result)
|
||
|
else:
|
||
|
watch()
|
||
|
|
||
|
# Let's watch its performance!
|
||
|
policy.eval()
|
||
|
test_envs.seed(args.seed)
|
||
|
test_collector.reset()
|
||
|
result = test_collector.collect(n_episode=args.test_num, render=args.render)
|
||
|
print(f"Final reward: {result['rews'].mean()}, length: {result['lens'].mean()}")
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
test_td3_bc()
|