2021-09-03 05:05:04 +08:00
|
|
|
import argparse
|
2021-04-16 20:37:12 +08:00
|
|
|
import os
|
|
|
|
import pprint
|
2021-09-03 05:05:04 +08:00
|
|
|
|
|
|
|
import gym
|
2021-04-16 20:37:12 +08:00
|
|
|
import numpy as np
|
2021-09-03 05:05:04 +08:00
|
|
|
import torch
|
2021-04-16 20:37:12 +08:00
|
|
|
from torch import nn
|
|
|
|
from torch.distributions import Independent, Normal
|
2021-09-03 05:05:04 +08:00
|
|
|
from torch.utils.tensorboard import SummaryWriter
|
2021-04-16 20:37:12 +08:00
|
|
|
|
2021-09-03 05:05:04 +08:00
|
|
|
from tianshou.data import Collector, VectorReplayBuffer
|
|
|
|
from tianshou.env import DummyVectorEnv
|
2021-04-16 20:37:12 +08:00
|
|
|
from tianshou.policy import TRPOPolicy
|
2021-09-03 05:05:04 +08:00
|
|
|
from tianshou.trainer import onpolicy_trainer
|
2021-08-30 10:35:02 -04:00
|
|
|
from tianshou.utils import TensorboardLogger
|
2021-04-16 20:37:12 +08:00
|
|
|
from tianshou.utils.net.common import Net
|
|
|
|
from tianshou.utils.net.continuous import ActorProb, Critic
|
|
|
|
|
|
|
|
|
|
|
|
def get_args():
|
|
|
|
parser = argparse.ArgumentParser()
|
2022-02-25 07:40:33 +08:00
|
|
|
parser.add_argument('--task', type=str, default='Pendulum-v1')
|
2022-03-04 03:35:39 +01:00
|
|
|
parser.add_argument('--reward-threshold', type=float, default=None)
|
2021-04-16 20:37:12 +08:00
|
|
|
parser.add_argument('--seed', type=int, default=1)
|
|
|
|
parser.add_argument('--buffer-size', type=int, default=50000)
|
|
|
|
parser.add_argument('--lr', type=float, default=1e-3)
|
|
|
|
parser.add_argument('--gamma', type=float, default=0.95)
|
|
|
|
parser.add_argument('--epoch', type=int, default=5)
|
|
|
|
parser.add_argument('--step-per-epoch', type=int, default=50000)
|
|
|
|
parser.add_argument('--step-per-collect', type=int, default=2048)
|
2021-09-03 05:05:04 +08:00
|
|
|
parser.add_argument(
|
|
|
|
'--repeat-per-collect', type=int, default=2
|
|
|
|
) # theoretically it should be 1
|
2021-04-16 20:37:12 +08:00
|
|
|
parser.add_argument('--batch-size', type=int, default=99999)
|
|
|
|
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64])
|
|
|
|
parser.add_argument('--training-num', type=int, default=16)
|
|
|
|
parser.add_argument('--test-num', type=int, default=10)
|
|
|
|
parser.add_argument('--logdir', type=str, default='log')
|
|
|
|
parser.add_argument('--render', type=float, default=0.)
|
|
|
|
parser.add_argument(
|
2021-09-03 05:05:04 +08:00
|
|
|
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
|
|
|
|
)
|
2021-04-16 20:37:12 +08:00
|
|
|
# trpo special
|
|
|
|
parser.add_argument('--gae-lambda', type=float, default=0.95)
|
|
|
|
parser.add_argument('--rew-norm', type=int, default=1)
|
|
|
|
parser.add_argument('--norm-adv', type=int, default=1)
|
|
|
|
parser.add_argument('--optim-critic-iters', type=int, default=5)
|
2021-04-21 09:52:15 +08:00
|
|
|
parser.add_argument('--max-kl', type=float, default=0.005)
|
2021-04-16 20:37:12 +08:00
|
|
|
parser.add_argument('--backtrack-coeff', type=float, default=0.8)
|
|
|
|
parser.add_argument('--max-backtracks', type=int, default=10)
|
|
|
|
|
|
|
|
args = parser.parse_known_args()[0]
|
|
|
|
return args
|
|
|
|
|
|
|
|
|
|
|
|
def test_trpo(args=get_args()):
|
|
|
|
env = gym.make(args.task)
|
|
|
|
args.state_shape = env.observation_space.shape or env.observation_space.n
|
|
|
|
args.action_shape = env.action_space.shape or env.action_space.n
|
|
|
|
args.max_action = env.action_space.high[0]
|
2022-03-04 03:35:39 +01:00
|
|
|
if args.reward_threshold is None:
|
|
|
|
default_reward_threshold = {"Pendulum-v0": -250, "Pendulum-v1": -250}
|
|
|
|
args.reward_threshold = default_reward_threshold.get(
|
|
|
|
args.task, env.spec.reward_threshold
|
|
|
|
)
|
2021-04-16 20:37:12 +08:00
|
|
|
# you can also use tianshou.env.SubprocVectorEnv
|
|
|
|
# train_envs = gym.make(args.task)
|
|
|
|
train_envs = DummyVectorEnv(
|
2021-09-03 05:05:04 +08:00
|
|
|
[lambda: gym.make(args.task) for _ in range(args.training_num)]
|
|
|
|
)
|
2021-04-16 20:37:12 +08:00
|
|
|
# test_envs = gym.make(args.task)
|
|
|
|
test_envs = DummyVectorEnv(
|
2021-09-03 05:05:04 +08:00
|
|
|
[lambda: gym.make(args.task) for _ in range(args.test_num)]
|
|
|
|
)
|
2021-04-16 20:37:12 +08:00
|
|
|
# seed
|
|
|
|
np.random.seed(args.seed)
|
|
|
|
torch.manual_seed(args.seed)
|
|
|
|
train_envs.seed(args.seed)
|
|
|
|
test_envs.seed(args.seed)
|
|
|
|
# model
|
2021-09-03 05:05:04 +08:00
|
|
|
net = Net(
|
|
|
|
args.state_shape,
|
|
|
|
hidden_sizes=args.hidden_sizes,
|
|
|
|
activation=nn.Tanh,
|
|
|
|
device=args.device
|
|
|
|
)
|
|
|
|
actor = ActorProb(
|
|
|
|
net,
|
|
|
|
args.action_shape,
|
|
|
|
max_action=args.max_action,
|
|
|
|
unbounded=True,
|
|
|
|
device=args.device
|
|
|
|
).to(args.device)
|
|
|
|
critic = Critic(
|
|
|
|
Net(
|
|
|
|
args.state_shape,
|
|
|
|
hidden_sizes=args.hidden_sizes,
|
|
|
|
device=args.device,
|
|
|
|
activation=nn.Tanh
|
|
|
|
),
|
|
|
|
device=args.device
|
|
|
|
).to(args.device)
|
2021-04-16 20:37:12 +08:00
|
|
|
# orthogonal initialization
|
|
|
|
for m in list(actor.modules()) + list(critic.modules()):
|
|
|
|
if isinstance(m, torch.nn.Linear):
|
|
|
|
torch.nn.init.orthogonal_(m.weight)
|
|
|
|
torch.nn.init.zeros_(m.bias)
|
2021-05-06 08:53:53 +08:00
|
|
|
optim = torch.optim.Adam(critic.parameters(), lr=args.lr)
|
2021-04-16 20:37:12 +08:00
|
|
|
|
|
|
|
# replace DiagGuassian with Independent(Normal) which is equivalent
|
|
|
|
# pass *logits to be consistent with policy.forward
|
|
|
|
def dist(*logits):
|
|
|
|
return Independent(Normal(*logits), 1)
|
|
|
|
|
|
|
|
policy = TRPOPolicy(
|
2021-09-03 05:05:04 +08:00
|
|
|
actor,
|
|
|
|
critic,
|
|
|
|
optim,
|
|
|
|
dist,
|
2021-04-16 20:37:12 +08:00
|
|
|
discount_factor=args.gamma,
|
|
|
|
reward_normalization=args.rew_norm,
|
|
|
|
advantage_normalization=args.norm_adv,
|
|
|
|
gae_lambda=args.gae_lambda,
|
|
|
|
action_space=env.action_space,
|
|
|
|
optim_critic_iters=args.optim_critic_iters,
|
|
|
|
max_kl=args.max_kl,
|
|
|
|
backtrack_coeff=args.backtrack_coeff,
|
2021-09-03 05:05:04 +08:00
|
|
|
max_backtracks=args.max_backtracks
|
|
|
|
)
|
2021-04-16 20:37:12 +08:00
|
|
|
# collector
|
|
|
|
train_collector = Collector(
|
2021-09-03 05:05:04 +08:00
|
|
|
policy, train_envs, VectorReplayBuffer(args.buffer_size, len(train_envs))
|
|
|
|
)
|
2021-04-16 20:37:12 +08:00
|
|
|
test_collector = Collector(policy, test_envs)
|
|
|
|
# log
|
|
|
|
log_path = os.path.join(args.logdir, args.task, 'trpo')
|
|
|
|
writer = SummaryWriter(log_path)
|
2021-08-30 10:35:02 -04:00
|
|
|
logger = TensorboardLogger(writer)
|
2021-04-16 20:37:12 +08:00
|
|
|
|
2022-03-21 16:29:27 -04:00
|
|
|
def save_best_fn(policy):
|
2021-04-16 20:37:12 +08:00
|
|
|
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
|
|
|
|
|
|
|
|
def stop_fn(mean_rewards):
|
2022-03-04 03:35:39 +01:00
|
|
|
return mean_rewards >= args.reward_threshold
|
2021-04-16 20:37:12 +08:00
|
|
|
|
|
|
|
# trainer
|
|
|
|
result = onpolicy_trainer(
|
2021-09-03 05:05:04 +08:00
|
|
|
policy,
|
|
|
|
train_collector,
|
|
|
|
test_collector,
|
|
|
|
args.epoch,
|
|
|
|
args.step_per_epoch,
|
|
|
|
args.repeat_per_collect,
|
|
|
|
args.test_num,
|
|
|
|
args.batch_size,
|
|
|
|
step_per_collect=args.step_per_collect,
|
|
|
|
stop_fn=stop_fn,
|
2022-03-21 16:29:27 -04:00
|
|
|
save_best_fn=save_best_fn,
|
2021-09-03 05:05:04 +08:00
|
|
|
logger=logger
|
|
|
|
)
|
2021-04-16 20:37:12 +08:00
|
|
|
assert stop_fn(result['best_reward'])
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
pprint.pprint(result)
|
|
|
|
# Let's watch its performance!
|
|
|
|
env = gym.make(args.task)
|
|
|
|
policy.eval()
|
|
|
|
collector = Collector(policy, env)
|
|
|
|
result = collector.collect(n_episode=1, render=args.render)
|
|
|
|
rews, lens = result["rews"], result["lens"]
|
|
|
|
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
test_trpo()
|