Tianshou/test/continuous/test_trpo.py

177 lines
6.0 KiB
Python
Raw Normal View History

import argparse
2021-04-16 20:37:12 +08:00
import os
import pprint
import gym
2021-04-16 20:37:12 +08:00
import numpy as np
import torch
2021-04-16 20:37:12 +08:00
from torch import nn
from torch.distributions import Independent, Normal
from torch.utils.tensorboard import SummaryWriter
2021-04-16 20:37:12 +08:00
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
2021-04-16 20:37:12 +08:00
from tianshou.policy import TRPOPolicy
from tianshou.trainer import onpolicy_trainer
from tianshou.utils import TensorboardLogger
2021-04-16 20:37:12 +08:00
from tianshou.utils.net.common import Net
from tianshou.utils.net.continuous import ActorProb, Critic
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='Pendulum-v1')
2022-03-04 03:35:39 +01:00
parser.add_argument('--reward-threshold', type=float, default=None)
2021-04-16 20:37:12 +08:00
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--buffer-size', type=int, default=50000)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.95)
parser.add_argument('--epoch', type=int, default=5)
parser.add_argument('--step-per-epoch', type=int, default=50000)
parser.add_argument('--step-per-collect', type=int, default=2048)
parser.add_argument(
'--repeat-per-collect', type=int, default=2
) # theoretically it should be 1
2021-04-16 20:37:12 +08:00
parser.add_argument('--batch-size', type=int, default=99999)
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64])
parser.add_argument('--training-num', type=int, default=16)
parser.add_argument('--test-num', type=int, default=10)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument(
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
)
2021-04-16 20:37:12 +08:00
# trpo special
parser.add_argument('--gae-lambda', type=float, default=0.95)
parser.add_argument('--rew-norm', type=int, default=1)
parser.add_argument('--norm-adv', type=int, default=1)
parser.add_argument('--optim-critic-iters', type=int, default=5)
2021-04-21 09:52:15 +08:00
parser.add_argument('--max-kl', type=float, default=0.005)
2021-04-16 20:37:12 +08:00
parser.add_argument('--backtrack-coeff', type=float, default=0.8)
parser.add_argument('--max-backtracks', type=int, default=10)
args = parser.parse_known_args()[0]
return args
def test_trpo(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
2022-03-04 03:35:39 +01:00
if args.reward_threshold is None:
default_reward_threshold = {"Pendulum-v0": -250, "Pendulum-v1": -250}
args.reward_threshold = default_reward_threshold.get(
args.task, env.spec.reward_threshold
)
2021-04-16 20:37:12 +08:00
# you can also use tianshou.env.SubprocVectorEnv
# train_envs = gym.make(args.task)
train_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)]
)
2021-04-16 20:37:12 +08:00
# test_envs = gym.make(args.task)
test_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)]
)
2021-04-16 20:37:12 +08:00
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
net = Net(
args.state_shape,
hidden_sizes=args.hidden_sizes,
activation=nn.Tanh,
device=args.device
)
actor = ActorProb(
net,
args.action_shape,
max_action=args.max_action,
unbounded=True,
device=args.device
).to(args.device)
critic = Critic(
Net(
args.state_shape,
hidden_sizes=args.hidden_sizes,
device=args.device,
activation=nn.Tanh
),
device=args.device
).to(args.device)
2021-04-16 20:37:12 +08:00
# orthogonal initialization
for m in list(actor.modules()) + list(critic.modules()):
if isinstance(m, torch.nn.Linear):
torch.nn.init.orthogonal_(m.weight)
torch.nn.init.zeros_(m.bias)
optim = torch.optim.Adam(critic.parameters(), lr=args.lr)
2021-04-16 20:37:12 +08:00
# replace DiagGuassian with Independent(Normal) which is equivalent
# pass *logits to be consistent with policy.forward
def dist(*logits):
return Independent(Normal(*logits), 1)
policy = TRPOPolicy(
actor,
critic,
optim,
dist,
2021-04-16 20:37:12 +08:00
discount_factor=args.gamma,
reward_normalization=args.rew_norm,
advantage_normalization=args.norm_adv,
gae_lambda=args.gae_lambda,
action_space=env.action_space,
optim_critic_iters=args.optim_critic_iters,
max_kl=args.max_kl,
backtrack_coeff=args.backtrack_coeff,
max_backtracks=args.max_backtracks
)
2021-04-16 20:37:12 +08:00
# collector
train_collector = Collector(
policy, train_envs, VectorReplayBuffer(args.buffer_size, len(train_envs))
)
2021-04-16 20:37:12 +08:00
test_collector = Collector(policy, test_envs)
# log
log_path = os.path.join(args.logdir, args.task, 'trpo')
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer)
2021-04-16 20:37:12 +08:00
def save_best_fn(policy):
2021-04-16 20:37:12 +08:00
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(mean_rewards):
2022-03-04 03:35:39 +01:00
return mean_rewards >= args.reward_threshold
2021-04-16 20:37:12 +08:00
# trainer
result = onpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
args.repeat_per_collect,
args.test_num,
args.batch_size,
step_per_collect=args.step_per_collect,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
logger=logger
)
2021-04-16 20:37:12 +08:00
assert stop_fn(result['best_reward'])
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
if __name__ == '__main__':
test_trpo()