2020-04-04 21:02:06 +08:00
|
|
|
|
import gym
|
2020-03-11 09:09:56 +08:00
|
|
|
|
import numpy as np
|
2020-03-15 17:41:00 +08:00
|
|
|
|
from abc import ABC, abstractmethod
|
2020-03-11 09:09:56 +08:00
|
|
|
|
from multiprocessing import Process, Pipe
|
2020-06-20 09:57:16 +08:00
|
|
|
|
from typing import List, Tuple, Union, Optional, Callable, Any
|
2020-03-26 09:01:20 +08:00
|
|
|
|
|
2020-03-11 09:38:14 +08:00
|
|
|
|
try:
|
|
|
|
|
import ray
|
|
|
|
|
except ImportError:
|
|
|
|
|
pass
|
2020-03-11 09:09:56 +08:00
|
|
|
|
|
2020-04-04 21:02:06 +08:00
|
|
|
|
from tianshou.env.utils import CloudpickleWrapper
|
2020-03-11 09:09:56 +08:00
|
|
|
|
|
|
|
|
|
|
2020-05-30 15:29:33 +02:00
|
|
|
|
class BaseVectorEnv(ABC, gym.Env):
|
2020-04-05 18:34:45 +08:00
|
|
|
|
"""Base class for vectorized environments wrapper. Usage:
|
2020-04-04 21:02:06 +08:00
|
|
|
|
::
|
|
|
|
|
|
|
|
|
|
env_num = 8
|
|
|
|
|
envs = VectorEnv([lambda: gym.make(task) for _ in range(env_num)])
|
2020-04-05 18:34:45 +08:00
|
|
|
|
assert len(envs) == env_num
|
2020-04-04 21:02:06 +08:00
|
|
|
|
|
|
|
|
|
It accepts a list of environment generators. In other words, an environment
|
|
|
|
|
generator ``efn`` of a specific task means that ``efn()`` returns the
|
|
|
|
|
environment of the given task, for example, ``gym.make(task)``.
|
|
|
|
|
|
|
|
|
|
All of the VectorEnv must inherit :class:`~tianshou.env.BaseVectorEnv`.
|
|
|
|
|
Here are some other usages:
|
|
|
|
|
::
|
|
|
|
|
|
|
|
|
|
envs.seed(2) # which is equal to the next line
|
|
|
|
|
envs.seed([2, 3, 4, 5, 6, 7, 8, 9]) # set specific seed for each env
|
|
|
|
|
obs = envs.reset() # reset all environments
|
|
|
|
|
obs = envs.reset([0, 5, 7]) # reset 3 specific environments
|
|
|
|
|
obs, rew, done, info = envs.step([1] * 8) # step synchronously
|
|
|
|
|
envs.render() # render all environments
|
|
|
|
|
envs.close() # close all environments
|
|
|
|
|
"""
|
|
|
|
|
|
2020-05-12 11:31:47 +08:00
|
|
|
|
def __init__(self, env_fns: List[Callable[[], gym.Env]]) -> None:
|
2020-03-13 21:47:17 +08:00
|
|
|
|
self._env_fns = env_fns
|
|
|
|
|
self.env_num = len(env_fns)
|
2020-06-05 11:17:43 +02:00
|
|
|
|
self._obs = None
|
|
|
|
|
self._rew = None
|
|
|
|
|
self._done = None
|
|
|
|
|
self._info = None
|
2020-03-15 17:41:00 +08:00
|
|
|
|
|
2020-05-12 11:31:47 +08:00
|
|
|
|
def __len__(self) -> int:
|
2020-04-04 21:02:06 +08:00
|
|
|
|
"""Return len(self), which is the number of environments."""
|
2020-03-15 17:41:00 +08:00
|
|
|
|
return self.env_num
|
|
|
|
|
|
2020-06-05 11:17:43 +02:00
|
|
|
|
def __getattribute__(self, key):
|
|
|
|
|
"""Switch between the default attribute getter or one
|
|
|
|
|
looking at wrapped environment level depending on the key."""
|
|
|
|
|
if key not in ('observation_space', 'action_space'):
|
|
|
|
|
return super().__getattribute__(key)
|
|
|
|
|
else:
|
|
|
|
|
return self.__getattr__(key)
|
|
|
|
|
|
|
|
|
|
@abstractmethod
|
|
|
|
|
def __getattr__(self, key):
|
|
|
|
|
"""Try to retrieve an attribute from each individual wrapped
|
|
|
|
|
environment, if it does not belong to the wrapping vector
|
|
|
|
|
environment class."""
|
|
|
|
|
pass
|
|
|
|
|
|
2020-03-15 17:41:00 +08:00
|
|
|
|
@abstractmethod
|
2020-05-12 11:31:47 +08:00
|
|
|
|
def reset(self, id: Optional[Union[int, List[int]]] = None):
|
2020-04-05 18:34:45 +08:00
|
|
|
|
"""Reset the state of all the environments and return initial
|
2020-04-04 21:02:06 +08:00
|
|
|
|
observations if id is ``None``, otherwise reset the specific
|
|
|
|
|
environments with given id, either an int or a list.
|
|
|
|
|
"""
|
2020-03-15 17:41:00 +08:00
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
@abstractmethod
|
2020-05-12 11:31:47 +08:00
|
|
|
|
def step(self, action: np.ndarray
|
|
|
|
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
2020-04-05 18:34:45 +08:00
|
|
|
|
"""Run one timestep of all the environments’ dynamics. When the end of
|
|
|
|
|
episode is reached, you are responsible for calling reset(id) to reset
|
|
|
|
|
this environment’s state.
|
2020-04-04 21:02:06 +08:00
|
|
|
|
|
2020-04-05 18:34:45 +08:00
|
|
|
|
Accept a batch of action and return a tuple (obs, rew, done, info).
|
2020-04-04 21:02:06 +08:00
|
|
|
|
|
2020-04-06 19:36:59 +08:00
|
|
|
|
:param numpy.ndarray action: a batch of action provided by the agent.
|
2020-04-04 21:02:06 +08:00
|
|
|
|
|
2020-04-05 18:34:45 +08:00
|
|
|
|
:return: A tuple including four items:
|
|
|
|
|
|
|
|
|
|
* ``obs`` a numpy.ndarray, the agent's observation of current \
|
|
|
|
|
environments
|
|
|
|
|
* ``rew`` a numpy.ndarray, the amount of rewards returned after \
|
|
|
|
|
previous actions
|
|
|
|
|
* ``done`` a numpy.ndarray, whether these episodes have ended, in \
|
2020-04-04 21:02:06 +08:00
|
|
|
|
which case further step() calls will return undefined results
|
2020-04-05 18:34:45 +08:00
|
|
|
|
* ``info`` a numpy.ndarray, contains auxiliary diagnostic \
|
|
|
|
|
information (helpful for debugging, and sometimes learning)
|
2020-04-04 21:02:06 +08:00
|
|
|
|
"""
|
2020-03-15 17:41:00 +08:00
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
@abstractmethod
|
2020-06-08 22:20:52 +08:00
|
|
|
|
def seed(self, seed: Optional[Union[int, List[int]]] = None) -> List[int]:
|
2020-05-30 15:29:33 +02:00
|
|
|
|
"""Set the seed for all environments.
|
|
|
|
|
|
|
|
|
|
Accept ``None``, an int (which will extend ``i`` to
|
|
|
|
|
``[i, i + 1, i + 2, ...]``) or a list.
|
|
|
|
|
|
2020-06-08 22:20:52 +08:00
|
|
|
|
:return: The list of seeds used in this env's random number \
|
|
|
|
|
generators. The first value in the list should be the "main" seed, or \
|
|
|
|
|
the value which a reproducer pass to "seed".
|
2020-04-04 21:02:06 +08:00
|
|
|
|
"""
|
2020-03-15 17:41:00 +08:00
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
@abstractmethod
|
2020-05-12 11:31:47 +08:00
|
|
|
|
def render(self, **kwargs) -> None:
|
2020-04-05 18:34:45 +08:00
|
|
|
|
"""Render all of the environments."""
|
2020-03-15 17:41:00 +08:00
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
@abstractmethod
|
2020-05-12 11:31:47 +08:00
|
|
|
|
def close(self) -> None:
|
2020-05-30 15:29:33 +02:00
|
|
|
|
"""Close all of the environments.
|
|
|
|
|
|
|
|
|
|
Environments will automatically close() themselves when garbage
|
|
|
|
|
collected or when the program exits.
|
|
|
|
|
"""
|
2020-03-15 17:41:00 +08:00
|
|
|
|
pass
|
|
|
|
|
|
2020-03-12 22:20:33 +08:00
|
|
|
|
|
|
|
|
|
class VectorEnv(BaseVectorEnv):
|
2020-04-09 21:36:53 +08:00
|
|
|
|
"""Dummy vectorized environment wrapper, implemented in for-loop.
|
|
|
|
|
|
|
|
|
|
.. seealso::
|
|
|
|
|
|
|
|
|
|
Please refer to :class:`~tianshou.env.BaseVectorEnv` for more detailed
|
|
|
|
|
explanation.
|
2020-04-04 21:02:06 +08:00
|
|
|
|
"""
|
2020-03-13 17:49:22 +08:00
|
|
|
|
|
2020-05-12 11:31:47 +08:00
|
|
|
|
def __init__(self, env_fns: List[Callable[[], gym.Env]]) -> None:
|
2020-03-25 14:08:28 +08:00
|
|
|
|
super().__init__(env_fns)
|
2020-03-11 09:09:56 +08:00
|
|
|
|
self.envs = [_() for _ in env_fns]
|
2020-03-11 09:38:14 +08:00
|
|
|
|
|
2020-06-05 11:17:43 +02:00
|
|
|
|
def __getattr__(self, key):
|
|
|
|
|
return [getattr(env, key) if hasattr(env, key) else None
|
|
|
|
|
for env in self.envs]
|
|
|
|
|
|
2020-06-20 09:57:16 +08:00
|
|
|
|
def reset(self, id: Optional[Union[int, List[int]]] = None) -> np.ndarray:
|
2020-03-25 14:08:28 +08:00
|
|
|
|
if id is None:
|
|
|
|
|
self._obs = np.stack([e.reset() for e in self.envs])
|
|
|
|
|
else:
|
|
|
|
|
if np.isscalar(id):
|
|
|
|
|
id = [id]
|
|
|
|
|
for i in id:
|
|
|
|
|
self._obs[i] = self.envs[i].reset()
|
2020-03-16 11:11:29 +08:00
|
|
|
|
return self._obs
|
2020-03-11 09:09:56 +08:00
|
|
|
|
|
2020-05-12 11:31:47 +08:00
|
|
|
|
def step(self, action: np.ndarray
|
|
|
|
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
2020-03-11 16:14:53 +08:00
|
|
|
|
assert len(action) == self.env_num
|
2020-03-25 14:08:28 +08:00
|
|
|
|
result = [e.step(a) for e, a in zip(self.envs, action)]
|
2020-03-16 11:11:29 +08:00
|
|
|
|
self._obs, self._rew, self._done, self._info = zip(*result)
|
2020-03-25 14:08:28 +08:00
|
|
|
|
self._obs = np.stack(self._obs)
|
|
|
|
|
self._rew = np.stack(self._rew)
|
|
|
|
|
self._done = np.stack(self._done)
|
|
|
|
|
self._info = np.stack(self._info)
|
|
|
|
|
return self._obs, self._rew, self._done, self._info
|
2020-03-11 09:09:56 +08:00
|
|
|
|
|
2020-06-08 22:20:52 +08:00
|
|
|
|
def seed(self, seed: Optional[Union[int, List[int]]] = None) -> List[int]:
|
2020-03-17 11:37:31 +08:00
|
|
|
|
if np.isscalar(seed):
|
|
|
|
|
seed = [seed + _ for _ in range(self.env_num)]
|
|
|
|
|
elif seed is None:
|
|
|
|
|
seed = [seed] * self.env_num
|
2020-03-25 14:08:28 +08:00
|
|
|
|
result = []
|
2020-03-11 16:14:53 +08:00
|
|
|
|
for e, s in zip(self.envs, seed):
|
2020-03-11 09:09:56 +08:00
|
|
|
|
if hasattr(e, 'seed'):
|
2020-03-25 14:08:28 +08:00
|
|
|
|
result.append(e.seed(s))
|
|
|
|
|
return result
|
2020-03-11 09:09:56 +08:00
|
|
|
|
|
2020-06-20 09:57:16 +08:00
|
|
|
|
def render(self, **kwargs) -> List[Any]:
|
2020-03-25 14:08:28 +08:00
|
|
|
|
result = []
|
2020-03-11 09:09:56 +08:00
|
|
|
|
for e in self.envs:
|
|
|
|
|
if hasattr(e, 'render'):
|
2020-03-25 14:08:28 +08:00
|
|
|
|
result.append(e.render(**kwargs))
|
|
|
|
|
return result
|
2020-03-11 09:09:56 +08:00
|
|
|
|
|
2020-06-20 09:57:16 +08:00
|
|
|
|
def close(self) -> List[Any]:
|
2020-04-04 21:02:06 +08:00
|
|
|
|
return [e.close() for e in self.envs]
|
2020-03-11 09:09:56 +08:00
|
|
|
|
|
|
|
|
|
|
2020-03-25 14:08:28 +08:00
|
|
|
|
def worker(parent, p, env_fn_wrapper):
|
2020-03-11 16:14:53 +08:00
|
|
|
|
parent.close()
|
|
|
|
|
env = env_fn_wrapper.data()
|
2020-03-17 20:22:37 +08:00
|
|
|
|
try:
|
|
|
|
|
while True:
|
|
|
|
|
cmd, data = p.recv()
|
|
|
|
|
if cmd == 'step':
|
2020-03-25 14:08:28 +08:00
|
|
|
|
p.send(env.step(data))
|
2020-03-17 20:22:37 +08:00
|
|
|
|
elif cmd == 'reset':
|
|
|
|
|
p.send(env.reset())
|
|
|
|
|
elif cmd == 'close':
|
2020-04-04 21:02:06 +08:00
|
|
|
|
p.send(env.close())
|
2020-03-17 20:22:37 +08:00
|
|
|
|
p.close()
|
|
|
|
|
break
|
|
|
|
|
elif cmd == 'render':
|
2020-03-18 21:45:41 +08:00
|
|
|
|
p.send(env.render(**data) if hasattr(env, 'render') else None)
|
2020-03-17 20:22:37 +08:00
|
|
|
|
elif cmd == 'seed':
|
|
|
|
|
p.send(env.seed(data) if hasattr(env, 'seed') else None)
|
2020-06-05 11:17:43 +02:00
|
|
|
|
elif cmd == 'getattr':
|
|
|
|
|
p.send(getattr(env, data) if hasattr(env, data) else None)
|
2020-03-17 20:22:37 +08:00
|
|
|
|
else:
|
|
|
|
|
p.close()
|
|
|
|
|
raise NotImplementedError
|
|
|
|
|
except KeyboardInterrupt:
|
|
|
|
|
p.close()
|
2020-03-11 16:14:53 +08:00
|
|
|
|
|
|
|
|
|
|
2020-03-12 22:20:33 +08:00
|
|
|
|
class SubprocVectorEnv(BaseVectorEnv):
|
2020-04-09 21:36:53 +08:00
|
|
|
|
"""Vectorized environment wrapper based on subprocess.
|
|
|
|
|
|
|
|
|
|
.. seealso::
|
|
|
|
|
|
|
|
|
|
Please refer to :class:`~tianshou.env.BaseVectorEnv` for more detailed
|
|
|
|
|
explanation.
|
2020-04-04 21:02:06 +08:00
|
|
|
|
"""
|
2020-03-13 17:49:22 +08:00
|
|
|
|
|
2020-05-12 11:31:47 +08:00
|
|
|
|
def __init__(self, env_fns: List[Callable[[], gym.Env]]) -> None:
|
2020-03-25 14:08:28 +08:00
|
|
|
|
super().__init__(env_fns)
|
2020-03-11 09:09:56 +08:00
|
|
|
|
self.closed = False
|
2020-03-13 17:49:22 +08:00
|
|
|
|
self.parent_remote, self.child_remote = \
|
|
|
|
|
zip(*[Pipe() for _ in range(self.env_num)])
|
2020-03-11 09:38:14 +08:00
|
|
|
|
self.processes = [
|
2020-03-13 17:49:22 +08:00
|
|
|
|
Process(target=worker, args=(
|
2020-03-26 09:01:20 +08:00
|
|
|
|
parent, child, CloudpickleWrapper(env_fn)), daemon=True)
|
2020-03-13 17:49:22 +08:00
|
|
|
|
for (parent, child, env_fn) in zip(
|
|
|
|
|
self.parent_remote, self.child_remote, env_fns)
|
2020-03-11 09:38:14 +08:00
|
|
|
|
]
|
2020-03-11 09:09:56 +08:00
|
|
|
|
for p in self.processes:
|
|
|
|
|
p.start()
|
|
|
|
|
for c in self.child_remote:
|
|
|
|
|
c.close()
|
|
|
|
|
|
2020-06-05 11:17:43 +02:00
|
|
|
|
def __getattr__(self, key):
|
|
|
|
|
for p in self.parent_remote:
|
|
|
|
|
p.send(['getattr', key])
|
|
|
|
|
return [p.recv() for p in self.parent_remote]
|
|
|
|
|
|
2020-05-12 11:31:47 +08:00
|
|
|
|
def step(self, action: np.ndarray
|
|
|
|
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
2020-03-11 16:14:53 +08:00
|
|
|
|
assert len(action) == self.env_num
|
2020-03-11 09:09:56 +08:00
|
|
|
|
for p, a in zip(self.parent_remote, action):
|
|
|
|
|
p.send(['step', a])
|
|
|
|
|
result = [p.recv() for p in self.parent_remote]
|
2020-03-25 14:08:28 +08:00
|
|
|
|
self._obs, self._rew, self._done, self._info = zip(*result)
|
|
|
|
|
self._obs = np.stack(self._obs)
|
|
|
|
|
self._rew = np.stack(self._rew)
|
|
|
|
|
self._done = np.stack(self._done)
|
|
|
|
|
self._info = np.stack(self._info)
|
|
|
|
|
return self._obs, self._rew, self._done, self._info
|
|
|
|
|
|
2020-06-20 09:57:16 +08:00
|
|
|
|
def reset(self, id: Optional[Union[int, List[int]]] = None) -> np.ndarray:
|
2020-03-25 14:08:28 +08:00
|
|
|
|
if id is None:
|
|
|
|
|
for p in self.parent_remote:
|
|
|
|
|
p.send(['reset', None])
|
|
|
|
|
self._obs = np.stack([p.recv() for p in self.parent_remote])
|
|
|
|
|
return self._obs
|
|
|
|
|
else:
|
|
|
|
|
if np.isscalar(id):
|
|
|
|
|
id = [id]
|
|
|
|
|
for i in id:
|
|
|
|
|
self.parent_remote[i].send(['reset', None])
|
|
|
|
|
for i in id:
|
|
|
|
|
self._obs[i] = self.parent_remote[i].recv()
|
|
|
|
|
return self._obs
|
2020-03-11 09:09:56 +08:00
|
|
|
|
|
2020-06-08 22:20:52 +08:00
|
|
|
|
def seed(self, seed: Optional[Union[int, List[int]]] = None) -> List[int]:
|
2020-03-17 11:37:31 +08:00
|
|
|
|
if np.isscalar(seed):
|
|
|
|
|
seed = [seed + _ for _ in range(self.env_num)]
|
|
|
|
|
elif seed is None:
|
|
|
|
|
seed = [seed] * self.env_num
|
2020-03-11 09:09:56 +08:00
|
|
|
|
for p, s in zip(self.parent_remote, seed):
|
|
|
|
|
p.send(['seed', s])
|
2020-03-25 14:08:28 +08:00
|
|
|
|
return [p.recv() for p in self.parent_remote]
|
2020-03-11 09:09:56 +08:00
|
|
|
|
|
2020-06-20 09:57:16 +08:00
|
|
|
|
def render(self, **kwargs) -> List[Any]:
|
2020-03-11 09:09:56 +08:00
|
|
|
|
for p in self.parent_remote:
|
2020-03-18 21:45:41 +08:00
|
|
|
|
p.send(['render', kwargs])
|
2020-03-25 14:08:28 +08:00
|
|
|
|
return [p.recv() for p in self.parent_remote]
|
2020-03-11 09:09:56 +08:00
|
|
|
|
|
2020-06-20 09:57:16 +08:00
|
|
|
|
def close(self) -> List[Any]:
|
2020-03-11 09:09:56 +08:00
|
|
|
|
if self.closed:
|
2020-06-20 09:57:16 +08:00
|
|
|
|
return []
|
2020-03-11 09:09:56 +08:00
|
|
|
|
for p in self.parent_remote:
|
|
|
|
|
p.send(['close', None])
|
2020-04-04 21:02:06 +08:00
|
|
|
|
result = [p.recv() for p in self.parent_remote]
|
2020-03-11 09:09:56 +08:00
|
|
|
|
self.closed = True
|
|
|
|
|
for p in self.processes:
|
|
|
|
|
p.join()
|
2020-04-04 21:02:06 +08:00
|
|
|
|
return result
|
2020-03-11 09:09:56 +08:00
|
|
|
|
|
|
|
|
|
|
2020-03-12 22:20:33 +08:00
|
|
|
|
class RayVectorEnv(BaseVectorEnv):
|
2020-04-05 18:34:45 +08:00
|
|
|
|
"""Vectorized environment wrapper based on
|
|
|
|
|
`ray <https://github.com/ray-project/ray>`_. However, according to our
|
|
|
|
|
test, it is about two times slower than
|
2020-04-09 21:36:53 +08:00
|
|
|
|
:class:`~tianshou.env.SubprocVectorEnv`.
|
|
|
|
|
|
|
|
|
|
.. seealso::
|
|
|
|
|
|
|
|
|
|
Please refer to :class:`~tianshou.env.BaseVectorEnv` for more detailed
|
|
|
|
|
explanation.
|
2020-04-04 21:02:06 +08:00
|
|
|
|
"""
|
2020-03-13 17:49:22 +08:00
|
|
|
|
|
2020-05-12 11:31:47 +08:00
|
|
|
|
def __init__(self, env_fns: List[Callable[[], gym.Env]]) -> None:
|
2020-03-25 14:08:28 +08:00
|
|
|
|
super().__init__(env_fns)
|
2020-03-11 09:09:56 +08:00
|
|
|
|
try:
|
2020-03-11 10:56:38 +08:00
|
|
|
|
if not ray.is_initialized():
|
|
|
|
|
ray.init()
|
|
|
|
|
except NameError:
|
2020-03-13 17:49:22 +08:00
|
|
|
|
raise ImportError(
|
2020-03-18 21:45:41 +08:00
|
|
|
|
'Please install ray to support RayVectorEnv: pip3 install ray')
|
2020-03-13 17:49:22 +08:00
|
|
|
|
self.envs = [
|
2020-04-04 21:02:06 +08:00
|
|
|
|
ray.remote(gym.Wrapper).options(num_cpus=0).remote(e())
|
2020-03-13 17:49:22 +08:00
|
|
|
|
for e in env_fns]
|
2020-03-11 09:09:56 +08:00
|
|
|
|
|
2020-06-05 11:17:43 +02:00
|
|
|
|
def __getattr__(self, key):
|
|
|
|
|
return ray.get([e.getattr.remote(key) for e in self.envs])
|
|
|
|
|
|
2020-05-12 11:31:47 +08:00
|
|
|
|
def step(self, action: np.ndarray
|
|
|
|
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
2020-03-11 16:14:53 +08:00
|
|
|
|
assert len(action) == self.env_num
|
2020-04-02 09:07:04 +08:00
|
|
|
|
result = ray.get([e.step.remote(a) for e, a in zip(self.envs, action)])
|
2020-03-16 11:11:29 +08:00
|
|
|
|
self._obs, self._rew, self._done, self._info = zip(*result)
|
2020-03-25 14:08:28 +08:00
|
|
|
|
self._obs = np.stack(self._obs)
|
|
|
|
|
self._rew = np.stack(self._rew)
|
|
|
|
|
self._done = np.stack(self._done)
|
|
|
|
|
self._info = np.stack(self._info)
|
|
|
|
|
return self._obs, self._rew, self._done, self._info
|
|
|
|
|
|
2020-06-20 09:57:16 +08:00
|
|
|
|
def reset(self, id: Optional[Union[int, List[int]]] = None) -> np.ndarray:
|
2020-03-25 14:08:28 +08:00
|
|
|
|
if id is None:
|
|
|
|
|
result_obj = [e.reset.remote() for e in self.envs]
|
2020-04-02 09:07:04 +08:00
|
|
|
|
self._obs = np.stack(ray.get(result_obj))
|
2020-03-25 14:08:28 +08:00
|
|
|
|
else:
|
2020-03-11 18:02:19 +08:00
|
|
|
|
result_obj = []
|
2020-03-25 14:08:28 +08:00
|
|
|
|
if np.isscalar(id):
|
|
|
|
|
id = [id]
|
|
|
|
|
for i in id:
|
|
|
|
|
result_obj.append(self.envs[i].reset.remote())
|
|
|
|
|
for _, i in enumerate(id):
|
|
|
|
|
self._obs[i] = ray.get(result_obj[_])
|
2020-03-16 11:11:29 +08:00
|
|
|
|
return self._obs
|
2020-03-11 09:09:56 +08:00
|
|
|
|
|
2020-06-08 22:20:52 +08:00
|
|
|
|
def seed(self, seed: Optional[Union[int, List[int]]] = None) -> List[int]:
|
2020-03-12 22:20:33 +08:00
|
|
|
|
if not hasattr(self.envs[0], 'seed'):
|
2020-06-20 09:57:16 +08:00
|
|
|
|
return []
|
2020-03-17 11:37:31 +08:00
|
|
|
|
if np.isscalar(seed):
|
|
|
|
|
seed = [seed + _ for _ in range(self.env_num)]
|
|
|
|
|
elif seed is None:
|
|
|
|
|
seed = [seed] * self.env_num
|
2020-04-02 09:07:04 +08:00
|
|
|
|
return ray.get([e.seed.remote(s) for e, s in zip(self.envs, seed)])
|
2020-03-11 09:09:56 +08:00
|
|
|
|
|
2020-06-20 09:57:16 +08:00
|
|
|
|
def render(self, **kwargs) -> List[Any]:
|
2020-03-12 22:20:33 +08:00
|
|
|
|
if not hasattr(self.envs[0], 'render'):
|
2020-06-20 09:57:16 +08:00
|
|
|
|
return [None for e in self.envs]
|
2020-04-02 09:07:04 +08:00
|
|
|
|
return ray.get([e.render.remote(**kwargs) for e in self.envs])
|
2020-03-11 09:09:56 +08:00
|
|
|
|
|
2020-06-20 09:57:16 +08:00
|
|
|
|
def close(self) -> List[Any]:
|
2020-04-02 09:07:04 +08:00
|
|
|
|
return ray.get([e.close.remote() for e in self.envs])
|