Tianshou/docs/index.rst

94 lines
3.5 KiB
ReStructuredText
Raw Normal View History

2020-03-28 22:01:23 +08:00
.. Tianshou documentation master file, created by
sphinx-quickstart on Sat Mar 28 15:58:19 2020.
You can adapt this file completely to your liking, but it should at least
contain the root `toctree` directive.
2020-03-29 10:22:03 +08:00
Welcome to Tianshou!
====================
2020-04-02 09:07:04 +08:00
**Tianshou** (`天授 <https://baike.baidu.com/item/%E5%A4%A9%E6%8E%88>`_) is a reinforcement learning platform based on pure PyTorch. Unlike existing reinforcement learning libraries, which are mainly based on TensorFlow, have many nested classes, unfriendly API, or slow-speed, Tianshou provides a fast-speed framework and pythonic API for building the deep reinforcement learning agent. The supported interface algorithms include:
2020-03-29 10:22:03 +08:00
2020-04-06 19:36:59 +08:00
* :class:`~tianshou.policy.PGPolicy` `Policy Gradient <https://papers.nips.cc/paper/1713-policy-gradient-methods-for-reinforcement-learning-with-function-approximation.pdf>`_
* :class:`~tianshou.policy.DQNPolicy` `Deep Q-Network <https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf>`_
* :class:`~tianshou.policy.DQNPolicy` `Double DQN <https://arxiv.org/pdf/1509.06461.pdf>`_ with n-step returns
2020-04-26 15:11:20 +08:00
* :class:`~tianshou.policy.DQNPolicy` `Prioritized DQN <https://arxiv.org/pdf/1511.05952.pdf>`_
2020-04-06 19:36:59 +08:00
* :class:`~tianshou.policy.A2CPolicy` `Advantage Actor-Critic <https://openai.com/blog/baselines-acktr-a2c/>`_
* :class:`~tianshou.policy.DDPGPolicy` `Deep Deterministic Policy Gradient <https://arxiv.org/pdf/1509.02971.pdf>`_
* :class:`~tianshou.policy.PPOPolicy` `Proximal Policy Optimization <https://arxiv.org/pdf/1707.06347.pdf>`_
* :class:`~tianshou.policy.TD3Policy` `Twin Delayed DDPG <https://arxiv.org/pdf/1802.09477.pdf>`_
* :class:`~tianshou.policy.SACPolicy` `Soft Actor-Critic <https://arxiv.org/pdf/1812.05905.pdf>`_
2020-04-14 21:11:06 +08:00
* :class:`~tianshou.policy.ImitationPolicy` Imitation Learning
* :meth:`~tianshou.policy.BasePolicy.compute_episodic_return` `Generalized Advantage Estimation <https://arxiv.org/pdf/1506.02438.pdf>`_
2020-03-29 10:22:03 +08:00
Tianshou supports parallel workers for all algorithms as well. All of these algorithms are reformatted as replay-buffer based algorithms.
2020-04-02 09:07:04 +08:00
2020-03-29 10:22:03 +08:00
Installation
------------
Tianshou is currently hosted on `PyPI <https://pypi.org/project/tianshou/>`_. You can simply install Tianshou with the following command:
::
2020-04-28 20:56:02 +08:00
pip3 install tianshou
2020-03-29 10:22:03 +08:00
You can also install with the newest version through GitHub:
::
pip3 install git+https://github.com/thu-ml/tianshou.git@master
2020-04-28 20:56:02 +08:00
If you use Anaconda or Miniconda, you can install Tianshou through the following command lines:
::
# create a new virtualenv and install pip, change the env name if you like
conda create -n myenv pip
# activate the environment
conda activate myenv
# install tianshou
pip install tianshou
2020-03-29 10:22:03 +08:00
After installation, open your python console and type
::
import tianshou as ts
print(ts.__version__)
If no error occurs, you have successfully installed Tianshou.
2020-04-10 10:47:16 +08:00
Tianshou is still under development, you can also check out the documents in stable version through `tianshou.readthedocs.io/en/stable/ <https://tianshou.readthedocs.io/en/stable/>`_.
2020-03-29 10:22:03 +08:00
.. toctree::
:maxdepth: 1
:caption: Tutorials
2020-03-29 15:18:33 +08:00
tutorials/dqn
tutorials/concepts
2020-04-10 11:16:33 +08:00
tutorials/trick
2020-04-10 10:47:16 +08:00
tutorials/cheatsheet
2020-03-29 10:22:03 +08:00
.. toctree::
:maxdepth: 1
:caption: API Docs
2020-04-02 09:07:04 +08:00
api/tianshou.data
api/tianshou.env
api/tianshou.policy
api/tianshou.trainer
api/tianshou.exploration
api/tianshou.utils
2020-03-28 22:01:23 +08:00
.. toctree::
2020-03-29 10:22:03 +08:00
:maxdepth: 1
:caption: Community
2020-03-28 22:01:23 +08:00
2020-03-29 10:22:03 +08:00
contributing
2020-04-11 19:29:46 +08:00
contributor
2020-03-28 22:01:23 +08:00
Indices and tables
2020-03-29 10:22:03 +08:00
------------------
2020-03-28 22:01:23 +08:00
* :ref:`genindex`
* :ref:`modindex`
* :ref:`search`