| 
									
										
										
										
											2022-01-16 05:30:21 +08:00
										 |  |  | import argparse | 
					
						
							|  |  |  | import datetime | 
					
						
							|  |  |  | import os | 
					
						
							|  |  |  | import pickle | 
					
						
							|  |  |  | import pprint | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | import gym | 
					
						
							|  |  |  | import numpy as np | 
					
						
							|  |  |  | import torch | 
					
						
							|  |  |  | from torch.utils.tensorboard import SummaryWriter | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-02-08 11:24:52 -05:00
										 |  |  | from tianshou.data import Collector, VectorReplayBuffer | 
					
						
							| 
									
										
										
										
											2022-02-25 07:40:33 +08:00
										 |  |  | from tianshou.env import DummyVectorEnv | 
					
						
							| 
									
										
										
										
											2022-01-16 05:30:21 +08:00
										 |  |  | from tianshou.policy import CQLPolicy | 
					
						
							| 
									
										
										
										
											2022-03-17 17:26:14 +01:00
										 |  |  | from tianshou.trainer import OfflineTrainer | 
					
						
							| 
									
										
										
										
											2022-01-16 05:30:21 +08:00
										 |  |  | from tianshou.utils import TensorboardLogger | 
					
						
							|  |  |  | from tianshou.utils.net.common import Net | 
					
						
							|  |  |  | from tianshou.utils.net.continuous import ActorProb, Critic | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == "__main__": | 
					
						
							| 
									
										
										
										
											2022-02-08 11:24:52 -05:00
										 |  |  |     from gather_pendulum_data import expert_file_name, gather_data | 
					
						
							| 
									
										
										
										
											2022-01-16 05:30:21 +08:00
										 |  |  | else:  # pytest | 
					
						
							| 
									
										
										
										
											2022-02-08 11:24:52 -05:00
										 |  |  |     from test.offline.gather_pendulum_data import expert_file_name, gather_data | 
					
						
							| 
									
										
										
										
											2022-01-16 05:30:21 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def get_args(): | 
					
						
							|  |  |  |     parser = argparse.ArgumentParser() | 
					
						
							| 
									
										
										
										
											2022-02-25 07:40:33 +08:00
										 |  |  |     parser.add_argument('--task', type=str, default='Pendulum-v1') | 
					
						
							| 
									
										
										
										
											2022-03-04 03:35:39 +01:00
										 |  |  |     parser.add_argument('--reward-threshold', type=float, default=None) | 
					
						
							| 
									
										
										
										
											2022-01-16 05:30:21 +08:00
										 |  |  |     parser.add_argument('--seed', type=int, default=0) | 
					
						
							| 
									
										
										
										
											2022-02-08 11:24:52 -05:00
										 |  |  |     parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[64, 64]) | 
					
						
							| 
									
										
										
										
											2022-01-16 05:30:21 +08:00
										 |  |  |     parser.add_argument('--actor-lr', type=float, default=1e-3) | 
					
						
							|  |  |  |     parser.add_argument('--critic-lr', type=float, default=1e-3) | 
					
						
							|  |  |  |     parser.add_argument('--alpha', type=float, default=0.2) | 
					
						
							|  |  |  |     parser.add_argument('--auto-alpha', default=True, action='store_true') | 
					
						
							|  |  |  |     parser.add_argument('--alpha-lr', type=float, default=1e-3) | 
					
						
							|  |  |  |     parser.add_argument('--cql-alpha-lr', type=float, default=1e-3) | 
					
						
							|  |  |  |     parser.add_argument("--start-timesteps", type=int, default=10000) | 
					
						
							| 
									
										
										
										
											2022-02-08 11:24:52 -05:00
										 |  |  |     parser.add_argument('--epoch', type=int, default=5) | 
					
						
							|  |  |  |     parser.add_argument('--step-per-epoch', type=int, default=500) | 
					
						
							| 
									
										
										
										
											2022-01-16 05:30:21 +08:00
										 |  |  |     parser.add_argument('--n-step', type=int, default=3) | 
					
						
							| 
									
										
										
										
											2022-02-08 11:24:52 -05:00
										 |  |  |     parser.add_argument('--batch-size', type=int, default=64) | 
					
						
							| 
									
										
										
										
											2022-01-16 05:30:21 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     parser.add_argument("--tau", type=float, default=0.005) | 
					
						
							|  |  |  |     parser.add_argument("--temperature", type=float, default=1.0) | 
					
						
							|  |  |  |     parser.add_argument("--cql-weight", type=float, default=1.0) | 
					
						
							|  |  |  |     parser.add_argument("--with-lagrange", type=bool, default=True) | 
					
						
							|  |  |  |     parser.add_argument("--lagrange-threshold", type=float, default=10.0) | 
					
						
							|  |  |  |     parser.add_argument("--gamma", type=float, default=0.99) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     parser.add_argument("--eval-freq", type=int, default=1) | 
					
						
							|  |  |  |     parser.add_argument('--test-num', type=int, default=10) | 
					
						
							|  |  |  |     parser.add_argument('--logdir', type=str, default='log') | 
					
						
							|  |  |  |     parser.add_argument('--render', type=float, default=1 / 35) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu' | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     parser.add_argument('--resume-path', type=str, default=None) | 
					
						
							|  |  |  |     parser.add_argument( | 
					
						
							|  |  |  |         '--watch', | 
					
						
							|  |  |  |         default=False, | 
					
						
							|  |  |  |         action='store_true', | 
					
						
							|  |  |  |         help='watch the play of pre-trained policy only', | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2022-02-08 11:24:52 -05:00
										 |  |  |     parser.add_argument("--load-buffer-name", type=str, default=expert_file_name()) | 
					
						
							| 
									
										
										
										
											2022-01-16 05:30:21 +08:00
										 |  |  |     args = parser.parse_known_args()[0] | 
					
						
							|  |  |  |     return args | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | def test_cql(args=get_args()): | 
					
						
							|  |  |  |     if os.path.exists(args.load_buffer_name) and os.path.isfile(args.load_buffer_name): | 
					
						
							| 
									
										
										
										
											2022-02-08 11:24:52 -05:00
										 |  |  |         if args.load_buffer_name.endswith(".hdf5"): | 
					
						
							|  |  |  |             buffer = VectorReplayBuffer.load_hdf5(args.load_buffer_name) | 
					
						
							|  |  |  |         else: | 
					
						
							|  |  |  |             buffer = pickle.load(open(args.load_buffer_name, "rb")) | 
					
						
							| 
									
										
										
										
											2022-01-16 05:30:21 +08:00
										 |  |  |     else: | 
					
						
							|  |  |  |         buffer = gather_data() | 
					
						
							|  |  |  |     env = gym.make(args.task) | 
					
						
							|  |  |  |     args.state_shape = env.observation_space.shape or env.observation_space.n | 
					
						
							|  |  |  |     args.action_shape = env.action_space.shape or env.action_space.n | 
					
						
							|  |  |  |     args.max_action = env.action_space.high[0]  # float | 
					
						
							| 
									
										
										
										
											2022-03-04 03:35:39 +01:00
										 |  |  |     if args.reward_threshold is None: | 
					
						
							|  |  |  |         # too low? | 
					
						
							|  |  |  |         default_reward_threshold = {"Pendulum-v0": -1200, "Pendulum-v1": -1200} | 
					
						
							|  |  |  |         args.reward_threshold = default_reward_threshold.get( | 
					
						
							|  |  |  |             args.task, env.spec.reward_threshold | 
					
						
							|  |  |  |         ) | 
					
						
							| 
									
										
										
										
											2022-01-16 05:30:21 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     args.state_dim = args.state_shape[0] | 
					
						
							|  |  |  |     args.action_dim = args.action_shape[0] | 
					
						
							|  |  |  |     # test_envs = gym.make(args.task) | 
					
						
							| 
									
										
										
										
											2022-02-25 07:40:33 +08:00
										 |  |  |     test_envs = DummyVectorEnv( | 
					
						
							| 
									
										
										
										
											2022-01-16 05:30:21 +08:00
										 |  |  |         [lambda: gym.make(args.task) for _ in range(args.test_num)] | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     # seed | 
					
						
							|  |  |  |     np.random.seed(args.seed) | 
					
						
							|  |  |  |     torch.manual_seed(args.seed) | 
					
						
							|  |  |  |     test_envs.seed(args.seed) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # model | 
					
						
							|  |  |  |     # actor network | 
					
						
							|  |  |  |     net_a = Net( | 
					
						
							|  |  |  |         args.state_shape, | 
					
						
							|  |  |  |         args.action_shape, | 
					
						
							|  |  |  |         hidden_sizes=args.hidden_sizes, | 
					
						
							|  |  |  |         device=args.device, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     actor = ActorProb( | 
					
						
							|  |  |  |         net_a, | 
					
						
							|  |  |  |         action_shape=args.action_shape, | 
					
						
							|  |  |  |         max_action=args.max_action, | 
					
						
							|  |  |  |         device=args.device, | 
					
						
							|  |  |  |         unbounded=True, | 
					
						
							| 
									
										
										
										
											2022-02-08 11:24:52 -05:00
										 |  |  |         conditioned_sigma=True, | 
					
						
							| 
									
										
										
										
											2022-01-16 05:30:21 +08:00
										 |  |  |     ).to(args.device) | 
					
						
							|  |  |  |     actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # critic network | 
					
						
							|  |  |  |     net_c1 = Net( | 
					
						
							|  |  |  |         args.state_shape, | 
					
						
							|  |  |  |         args.action_shape, | 
					
						
							|  |  |  |         hidden_sizes=args.hidden_sizes, | 
					
						
							|  |  |  |         concat=True, | 
					
						
							|  |  |  |         device=args.device, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     net_c2 = Net( | 
					
						
							|  |  |  |         args.state_shape, | 
					
						
							|  |  |  |         args.action_shape, | 
					
						
							|  |  |  |         hidden_sizes=args.hidden_sizes, | 
					
						
							|  |  |  |         concat=True, | 
					
						
							|  |  |  |         device=args.device, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  |     critic1 = Critic(net_c1, device=args.device).to(args.device) | 
					
						
							|  |  |  |     critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr) | 
					
						
							|  |  |  |     critic2 = Critic(net_c2, device=args.device).to(args.device) | 
					
						
							|  |  |  |     critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     if args.auto_alpha: | 
					
						
							|  |  |  |         target_entropy = -np.prod(env.action_space.shape) | 
					
						
							|  |  |  |         log_alpha = torch.zeros(1, requires_grad=True, device=args.device) | 
					
						
							|  |  |  |         alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr) | 
					
						
							|  |  |  |         args.alpha = (target_entropy, log_alpha, alpha_optim) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     policy = CQLPolicy( | 
					
						
							|  |  |  |         actor, | 
					
						
							|  |  |  |         actor_optim, | 
					
						
							|  |  |  |         critic1, | 
					
						
							|  |  |  |         critic1_optim, | 
					
						
							|  |  |  |         critic2, | 
					
						
							|  |  |  |         critic2_optim, | 
					
						
							|  |  |  |         cql_alpha_lr=args.cql_alpha_lr, | 
					
						
							|  |  |  |         cql_weight=args.cql_weight, | 
					
						
							|  |  |  |         tau=args.tau, | 
					
						
							|  |  |  |         gamma=args.gamma, | 
					
						
							|  |  |  |         alpha=args.alpha, | 
					
						
							|  |  |  |         temperature=args.temperature, | 
					
						
							|  |  |  |         with_lagrange=args.with_lagrange, | 
					
						
							|  |  |  |         lagrange_threshold=args.lagrange_threshold, | 
					
						
							|  |  |  |         min_action=np.min(env.action_space.low), | 
					
						
							|  |  |  |         max_action=np.max(env.action_space.high), | 
					
						
							|  |  |  |         device=args.device, | 
					
						
							|  |  |  |     ) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # load a previous policy | 
					
						
							|  |  |  |     if args.resume_path: | 
					
						
							|  |  |  |         policy.load_state_dict(torch.load(args.resume_path, map_location=args.device)) | 
					
						
							|  |  |  |         print("Loaded agent from: ", args.resume_path) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # collector | 
					
						
							|  |  |  |     # buffer has been gathered | 
					
						
							|  |  |  |     # train_collector = Collector(policy, train_envs, buffer, exploration_noise=True) | 
					
						
							|  |  |  |     test_collector = Collector(policy, test_envs) | 
					
						
							|  |  |  |     # log | 
					
						
							|  |  |  |     t0 = datetime.datetime.now().strftime("%m%d_%H%M%S") | 
					
						
							|  |  |  |     log_file = f'seed_{args.seed}_{t0}-{args.task.replace("-", "_")}_cql' | 
					
						
							|  |  |  |     log_path = os.path.join(args.logdir, args.task, 'cql', log_file) | 
					
						
							|  |  |  |     writer = SummaryWriter(log_path) | 
					
						
							|  |  |  |     writer.add_text("args", str(args)) | 
					
						
							|  |  |  |     logger = TensorboardLogger(writer) | 
					
						
							|  |  |  | 
 | 
					
						
							| 
									
										
										
										
											2022-03-21 16:29:27 -04:00
										 |  |  |     def save_best_fn(policy): | 
					
						
							| 
									
										
										
										
											2022-01-16 05:30:21 +08:00
										 |  |  |         torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth')) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     def stop_fn(mean_rewards): | 
					
						
							| 
									
										
										
										
											2022-03-04 03:35:39 +01:00
										 |  |  |         return mean_rewards >= args.reward_threshold | 
					
						
							| 
									
										
										
										
											2022-01-16 05:30:21 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     def watch(): | 
					
						
							|  |  |  |         policy.load_state_dict( | 
					
						
							|  |  |  |             torch.load( | 
					
						
							|  |  |  |                 os.path.join(log_path, 'policy.pth'), map_location=torch.device('cpu') | 
					
						
							|  |  |  |             ) | 
					
						
							|  |  |  |         ) | 
					
						
							|  |  |  |         policy.eval() | 
					
						
							|  |  |  |         collector = Collector(policy, env) | 
					
						
							|  |  |  |         collector.collect(n_episode=1, render=1 / 35) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     # trainer | 
					
						
							| 
									
										
										
										
											2022-03-17 17:26:14 +01:00
										 |  |  |     trainer = OfflineTrainer( | 
					
						
							| 
									
										
										
										
											2022-01-16 05:30:21 +08:00
										 |  |  |         policy, | 
					
						
							|  |  |  |         buffer, | 
					
						
							|  |  |  |         test_collector, | 
					
						
							|  |  |  |         args.epoch, | 
					
						
							|  |  |  |         args.step_per_epoch, | 
					
						
							|  |  |  |         args.test_num, | 
					
						
							|  |  |  |         args.batch_size, | 
					
						
							| 
									
										
										
										
											2022-03-21 16:29:27 -04:00
										 |  |  |         save_best_fn=save_best_fn, | 
					
						
							| 
									
										
										
										
											2022-01-16 05:30:21 +08:00
										 |  |  |         stop_fn=stop_fn, | 
					
						
							|  |  |  |         logger=logger, | 
					
						
							|  |  |  |     ) | 
					
						
							| 
									
										
										
										
											2022-03-17 17:26:14 +01:00
										 |  |  | 
 | 
					
						
							|  |  |  |     for epoch, epoch_stat, info in trainer: | 
					
						
							|  |  |  |         print(f"Epoch: {epoch}") | 
					
						
							|  |  |  |         print(epoch_stat) | 
					
						
							|  |  |  |         print(info) | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  |     assert stop_fn(info["best_reward"]) | 
					
						
							| 
									
										
										
										
											2022-01-16 05:30:21 +08:00
										 |  |  | 
 | 
					
						
							|  |  |  |     # Let's watch its performance! | 
					
						
							| 
									
										
										
										
											2022-03-17 17:26:14 +01:00
										 |  |  |     if __name__ == "__main__": | 
					
						
							|  |  |  |         pprint.pprint(info) | 
					
						
							| 
									
										
										
										
											2022-01-16 05:30:21 +08:00
										 |  |  |         env = gym.make(args.task) | 
					
						
							|  |  |  |         policy.eval() | 
					
						
							|  |  |  |         collector = Collector(policy, env) | 
					
						
							|  |  |  |         result = collector.collect(n_episode=1, render=args.render) | 
					
						
							|  |  |  |         rews, lens = result["rews"], result["lens"] | 
					
						
							|  |  |  |         print(f"Final reward: {rews.mean()}, length: {lens.mean()}") | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | 
 | 
					
						
							|  |  |  | if __name__ == '__main__': | 
					
						
							|  |  |  |     test_cql() |