2020-03-14 21:48:31 +08:00
|
|
|
import torch
|
2020-03-12 22:20:33 +08:00
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
class MovAvg(object):
|
|
|
|
def __init__(self, size=100):
|
|
|
|
super().__init__()
|
|
|
|
self.size = size
|
|
|
|
self.cache = []
|
|
|
|
|
|
|
|
def add(self, x):
|
2020-03-14 21:48:31 +08:00
|
|
|
if isinstance(x, torch.Tensor):
|
2020-03-12 22:20:33 +08:00
|
|
|
x = x.detach().cpu().numpy()
|
2020-03-17 11:37:31 +08:00
|
|
|
if isinstance(x, list):
|
|
|
|
for _ in x:
|
|
|
|
if _ != np.inf:
|
|
|
|
self.cache.append(_)
|
|
|
|
elif x != np.inf:
|
2020-03-12 22:20:33 +08:00
|
|
|
self.cache.append(x)
|
|
|
|
if self.size > 0 and len(self.cache) > self.size:
|
|
|
|
self.cache = self.cache[-self.size:]
|
|
|
|
return self.get()
|
|
|
|
|
|
|
|
def get(self):
|
|
|
|
if len(self.cache) == 0:
|
|
|
|
return 0
|
|
|
|
return np.mean(self.cache)
|
2020-03-15 17:41:00 +08:00
|
|
|
|
|
|
|
def mean(self):
|
|
|
|
return self.get()
|
|
|
|
|
|
|
|
def std(self):
|
|
|
|
if len(self.cache) == 0:
|
|
|
|
return 0
|
|
|
|
return np.std(self.cache)
|