43 lines
1.5 KiB
Python
43 lines
1.5 KiB
Python
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
from tianshou.data import Batch
|
||
|
from tianshou.policy import PGPolicy
|
||
|
|
||
|
|
||
|
class A2CPolicy(PGPolicy):
|
||
|
"""docstring for A2CPolicy"""
|
||
|
|
||
|
def __init__(self, model, optim, dist_fn=torch.distributions.Categorical,
|
||
|
discount_factor=0.99, vf_coef=.5, entropy_coef=.01):
|
||
|
super().__init__(model, optim, dist_fn, discount_factor)
|
||
|
self._w_value = vf_coef
|
||
|
self._w_entropy = entropy_coef
|
||
|
|
||
|
def __call__(self, batch, state=None):
|
||
|
logits, value, h = self.model(batch.obs, state=state, info=batch.info)
|
||
|
logits = F.softmax(logits, dim=1)
|
||
|
dist = self.dist_fn(logits)
|
||
|
act = dist.sample().detach().cpu().numpy()
|
||
|
return Batch(logits=logits, act=act, state=h, dist=dist, value=value)
|
||
|
|
||
|
def learn(self, batch, batch_size=None):
|
||
|
losses = []
|
||
|
for b in batch.split(batch_size):
|
||
|
self.optim.zero_grad()
|
||
|
result = self(b)
|
||
|
dist = result.dist
|
||
|
v = result.value
|
||
|
a = torch.tensor(b.act, device=dist.logits.device)
|
||
|
r = torch.tensor(b.returns, device=dist.logits.device)
|
||
|
actor_loss = -(dist.log_prob(a) * (r - v).detach()).mean()
|
||
|
critic_loss = (r - v).pow(2).mean()
|
||
|
entropy_loss = dist.entropy().mean()
|
||
|
loss = actor_loss \
|
||
|
+ self._w_value * critic_loss \
|
||
|
- self._w_entropy * entropy_loss
|
||
|
loss.backward()
|
||
|
self.optim.step()
|
||
|
losses.append(loss.detach().cpu().numpy())
|
||
|
return losses
|