2020-08-27 12:15:18 +08:00
|
|
|
import numpy as np
|
2021-09-03 05:05:04 +08:00
|
|
|
import torch
|
2020-08-27 12:15:18 +08:00
|
|
|
|
2020-10-31 16:38:54 +08:00
|
|
|
from tianshou.exploration import GaussianNoise, OUNoise
|
2021-09-03 05:05:04 +08:00
|
|
|
from tianshou.utils import MovAvg, RunningMeanStd
|
|
|
|
from tianshou.utils.net.common import MLP, Net
|
2020-08-27 12:15:18 +08:00
|
|
|
from tianshou.utils.net.continuous import RecurrentActorProb, RecurrentCritic
|
|
|
|
|
|
|
|
|
|
|
|
def test_noise():
|
|
|
|
noise = GaussianNoise()
|
|
|
|
size = (3, 4, 5)
|
|
|
|
assert np.allclose(noise(size).shape, size)
|
|
|
|
noise = OUNoise()
|
|
|
|
noise.reset()
|
|
|
|
assert np.allclose(noise(size).shape, size)
|
|
|
|
|
|
|
|
|
|
|
|
def test_moving_average():
|
|
|
|
stat = MovAvg(10)
|
|
|
|
assert np.allclose(stat.get(), 0)
|
|
|
|
assert np.allclose(stat.mean(), 0)
|
2021-09-03 05:05:04 +08:00
|
|
|
assert np.allclose(stat.std()**2, 0)
|
2020-08-27 12:15:18 +08:00
|
|
|
stat.add(torch.tensor([1]))
|
|
|
|
stat.add(np.array([2]))
|
|
|
|
stat.add([3, 4])
|
|
|
|
stat.add(5.)
|
|
|
|
assert np.allclose(stat.get(), 3)
|
|
|
|
assert np.allclose(stat.mean(), 3)
|
2021-09-03 05:05:04 +08:00
|
|
|
assert np.allclose(stat.std()**2, 2)
|
2020-08-27 12:15:18 +08:00
|
|
|
|
|
|
|
|
2021-03-11 20:50:20 +08:00
|
|
|
def test_rms():
|
|
|
|
rms = RunningMeanStd()
|
|
|
|
assert np.allclose(rms.mean, 0)
|
|
|
|
assert np.allclose(rms.var, 1)
|
|
|
|
rms.update(np.array([[[1, 2], [3, 5]]]))
|
|
|
|
rms.update(np.array([[[1, 2], [3, 4]], [[1, 2], [0, 0]]]))
|
|
|
|
assert np.allclose(rms.mean, np.array([[1, 2], [2, 3]]), atol=1e-3)
|
|
|
|
assert np.allclose(rms.var, np.array([[0, 0], [2, 14 / 3.]]), atol=1e-3)
|
|
|
|
|
|
|
|
|
2020-08-27 12:15:18 +08:00
|
|
|
def test_net():
|
|
|
|
# here test the networks that does not appear in the other script
|
|
|
|
bsz = 64
|
2021-01-20 16:54:13 +08:00
|
|
|
# MLP
|
|
|
|
data = torch.rand([bsz, 3])
|
|
|
|
mlp = MLP(3, 6, hidden_sizes=[128])
|
|
|
|
assert list(mlp(data).shape) == [bsz, 6]
|
|
|
|
# output == 0 and len(hidden_sizes) == 0 means identity model
|
|
|
|
mlp = MLP(6, 0)
|
|
|
|
assert data.shape == mlp(data).shape
|
2020-08-27 12:15:18 +08:00
|
|
|
# common net
|
|
|
|
state_shape = (10, 2)
|
|
|
|
action_shape = (5, )
|
|
|
|
data = torch.rand([bsz, *state_shape])
|
|
|
|
expect_output_shape = [bsz, *action_shape]
|
2021-09-03 05:05:04 +08:00
|
|
|
net = Net(
|
|
|
|
state_shape,
|
|
|
|
action_shape,
|
|
|
|
hidden_sizes=[128, 128],
|
|
|
|
norm_layer=torch.nn.LayerNorm,
|
|
|
|
activation=None
|
|
|
|
)
|
2020-08-27 12:15:18 +08:00
|
|
|
assert list(net(data)[0].shape) == expect_output_shape
|
2021-01-20 16:54:13 +08:00
|
|
|
assert str(net).count("LayerNorm") == 2
|
|
|
|
assert str(net).count("ReLU") == 0
|
|
|
|
Q_param = V_param = {"hidden_sizes": [128, 128]}
|
2021-09-03 05:05:04 +08:00
|
|
|
net = Net(
|
|
|
|
state_shape,
|
|
|
|
action_shape,
|
|
|
|
hidden_sizes=[128, 128],
|
|
|
|
dueling_param=(Q_param, V_param)
|
|
|
|
)
|
2021-01-20 16:54:13 +08:00
|
|
|
assert list(net(data)[0].shape) == expect_output_shape
|
|
|
|
# concat
|
2021-09-03 05:05:04 +08:00
|
|
|
net = Net(state_shape, action_shape, hidden_sizes=[128], concat=True)
|
2021-01-20 16:54:13 +08:00
|
|
|
data = torch.rand([bsz, np.prod(state_shape) + np.prod(action_shape)])
|
|
|
|
expect_output_shape = [bsz, 128]
|
|
|
|
assert list(net(data)[0].shape) == expect_output_shape
|
2021-09-03 05:05:04 +08:00
|
|
|
net = Net(
|
|
|
|
state_shape,
|
|
|
|
action_shape,
|
|
|
|
hidden_sizes=[128],
|
|
|
|
concat=True,
|
|
|
|
dueling_param=(Q_param, V_param)
|
|
|
|
)
|
2020-08-27 12:15:18 +08:00
|
|
|
assert list(net(data)[0].shape) == expect_output_shape
|
|
|
|
# recurrent actor/critic
|
2021-01-20 16:54:13 +08:00
|
|
|
data = torch.rand([bsz, *state_shape]).flatten(1)
|
|
|
|
expect_output_shape = [bsz, *action_shape]
|
2020-08-27 12:15:18 +08:00
|
|
|
net = RecurrentActorProb(3, state_shape, action_shape)
|
|
|
|
mu, sigma = net(data)[0]
|
|
|
|
assert mu.shape == sigma.shape
|
|
|
|
assert list(mu.shape) == [bsz, 5]
|
|
|
|
net = RecurrentCritic(3, state_shape, action_shape)
|
|
|
|
data = torch.rand([bsz, 8, np.prod(state_shape)])
|
|
|
|
act = torch.rand(expect_output_shape)
|
|
|
|
assert list(net(data, act).shape) == [bsz, 1]
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
test_noise()
|
|
|
|
test_moving_average()
|
2021-03-11 20:50:20 +08:00
|
|
|
test_rms()
|
2020-08-27 12:15:18 +08:00
|
|
|
test_net()
|