348 lines
14 KiB
Python
Raw Normal View History

import h5py
import numpy as np
from typing import Any, Dict, List, Tuple, Union, Optional
from tianshou.data import Batch
from tianshou.data.utils.converter import to_hdf5, from_hdf5
from tianshou.data.batch import _create_value, _alloc_by_keys_diff
class ReplayBuffer:
""":class:`~tianshou.data.ReplayBuffer` stores data generated from interaction \
between the policy and environment.
ReplayBuffer can be considered as a specialized form (or management) of Batch. It
stores all the data in a batch with circular-queue style.
For the example usage of ReplayBuffer, please check out Section Buffer in
:doc:`/tutorials/concepts`.
:param int size: the maximum size of replay buffer.
:param int stack_num: the frame-stack sampling argument, should be greater than or
equal to 1. Default to 1 (no stacking).
:param bool ignore_obs_next: whether to store obs_next. Default to False.
:param bool save_only_last_obs: only save the last obs/obs_next when it has a shape
of (timestep, ...) because of temporal stacking. Default to False.
:param bool sample_avail: the parameter indicating sampling only available index
when using frame-stack sampling method. Default to False.
"""
_reserved_keys = ("obs", "act", "rew", "done", "obs_next", "info", "policy")
def __init__(
self,
size: int,
stack_num: int = 1,
ignore_obs_next: bool = False,
save_only_last_obs: bool = False,
sample_avail: bool = False,
**kwargs: Any, # otherwise PrioritizedVectorReplayBuffer will cause TypeError
) -> None:
self.options: Dict[str, Any] = {
"stack_num": stack_num,
"ignore_obs_next": ignore_obs_next,
"save_only_last_obs": save_only_last_obs,
"sample_avail": sample_avail,
}
super().__init__()
self.maxsize = size
assert stack_num > 0, "stack_num should be greater than 0"
self.stack_num = stack_num
self._indices = np.arange(size)
self._save_obs_next = not ignore_obs_next
self._save_only_last_obs = save_only_last_obs
self._sample_avail = sample_avail
self._meta: Batch = Batch()
self._ep_rew: Union[float, np.ndarray]
self.reset()
def __len__(self) -> int:
"""Return len(self)."""
return self._size
def __repr__(self) -> str:
"""Return str(self)."""
return self.__class__.__name__ + self._meta.__repr__()[5:]
def __getattr__(self, key: str) -> Any:
"""Return self.key."""
try:
return self._meta[key]
except KeyError as e:
raise AttributeError from e
def __setstate__(self, state: Dict[str, Any]) -> None:
"""Unpickling interface.
We need it because pickling buffer does not work out-of-the-box
("buffer.__getattr__" is customized).
"""
self.__dict__.update(state)
def __setattr__(self, key: str, value: Any) -> None:
"""Set self.key = value."""
assert (
key not in self._reserved_keys
), "key '{}' is reserved and cannot be assigned".format(key)
super().__setattr__(key, value)
def save_hdf5(self, path: str) -> None:
"""Save replay buffer to HDF5 file."""
with h5py.File(path, "w") as f:
to_hdf5(self.__dict__, f)
@classmethod
def load_hdf5(cls, path: str, device: Optional[str] = None) -> "ReplayBuffer":
"""Load replay buffer from HDF5 file."""
with h5py.File(path, "r") as f:
buf = cls.__new__(cls)
buf.__setstate__(from_hdf5(f, device=device))
return buf
def reset(self, keep_statistics: bool = False) -> None:
"""Clear all the data in replay buffer and episode statistics."""
self.last_index = np.array([0])
self._index = self._size = 0
if not keep_statistics:
self._ep_rew, self._ep_len, self._ep_idx = 0.0, 0, 0
def set_batch(self, batch: Batch) -> None:
"""Manually choose the batch you want the ReplayBuffer to manage."""
assert len(batch) == self.maxsize and set(batch.keys()).issubset(
self._reserved_keys
), "Input batch doesn't meet ReplayBuffer's data form requirement."
self._meta = batch
def unfinished_index(self) -> np.ndarray:
"""Return the index of unfinished episode."""
last = (self._index - 1) % self._size if self._size else 0
return np.array([last] if not self.done[last] and self._size else [], int)
def prev(self, index: Union[int, np.ndarray]) -> np.ndarray:
"""Return the index of previous transition.
The index won't be modified if it is the beginning of an episode.
"""
index = (index - 1) % self._size
end_flag = self.done[index] | (index == self.last_index[0])
return (index + end_flag) % self._size
def next(self, index: Union[int, np.ndarray]) -> np.ndarray:
"""Return the index of next transition.
The index won't be modified if it is the end of an episode.
"""
end_flag = self.done[index] | (index == self.last_index[0])
return (index + (1 - end_flag)) % self._size
def update(self, buffer: "ReplayBuffer") -> np.ndarray:
"""Move the data from the given buffer to current buffer.
Return the updated indices. If update fails, return an empty array.
"""
if len(buffer) == 0 or self.maxsize == 0:
return np.array([], int)
stack_num, buffer.stack_num = buffer.stack_num, 1
from_indices = buffer.sample_index(0) # get all available indices
buffer.stack_num = stack_num
if len(from_indices) == 0:
return np.array([], int)
to_indices = []
for _ in range(len(from_indices)):
to_indices.append(self._index)
self.last_index[0] = self._index
self._index = (self._index + 1) % self.maxsize
self._size = min(self._size + 1, self.maxsize)
to_indices = np.array(to_indices)
if self._meta.is_empty():
self._meta = _create_value( # type: ignore
buffer._meta, self.maxsize, stack=False)
self._meta[to_indices] = buffer._meta[from_indices]
return to_indices
def _add_index(
self, rew: Union[float, np.ndarray], done: bool
) -> Tuple[int, Union[float, np.ndarray], int, int]:
"""Maintain the buffer's state after adding one data batch.
Return (index_to_be_modified, episode_reward, episode_length,
episode_start_index).
"""
self.last_index[0] = ptr = self._index
self._size = min(self._size + 1, self.maxsize)
self._index = (self._index + 1) % self.maxsize
self._ep_rew += rew
self._ep_len += 1
if done:
result = ptr, self._ep_rew, self._ep_len, self._ep_idx
self._ep_rew, self._ep_len, self._ep_idx = 0.0, 0, self._index
return result
else:
return ptr, self._ep_rew * 0.0, 0, self._ep_idx
def add(
self, batch: Batch, buffer_ids: Optional[Union[np.ndarray, List[int]]] = None
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
"""Add a batch of data into replay buffer.
:param Batch batch: the input data batch. Its keys must belong to the 7
reserved keys, and "obs", "act", "rew", "done" is required.
:param buffer_ids: to make consistent with other buffer's add function; if it
is not None, we assume the input batch's first dimension is always 1.
Return (current_index, episode_reward, episode_length, episode_start_index). If
the episode is not finished, the return value of episode_length and
episode_reward is 0.
"""
# preprocess batch
b = Batch()
for key in set(self._reserved_keys).intersection(batch.keys()):
b.__dict__[key] = batch[key]
batch = b
assert set(["obs", "act", "rew", "done"]).issubset(batch.keys())
stacked_batch = buffer_ids is not None
if stacked_batch:
assert len(batch) == 1
if self._save_only_last_obs:
batch.obs = batch.obs[:, -1] if stacked_batch else batch.obs[-1]
if not self._save_obs_next:
batch.pop("obs_next", None)
elif self._save_only_last_obs:
batch.obs_next = (
batch.obs_next[:, -1] if stacked_batch else batch.obs_next[-1]
)
# get ptr
if stacked_batch:
rew, done = batch.rew[0], batch.done[0]
else:
rew, done = batch.rew, batch.done
ptr, ep_rew, ep_len, ep_idx = list(
map(lambda x: np.array([x]), self._add_index(rew, done))
)
try:
self._meta[ptr] = batch
except ValueError:
stack = not stacked_batch
batch.rew = batch.rew.astype(float)
batch.done = batch.done.astype(bool)
if self._meta.is_empty():
self._meta = _create_value( # type: ignore
batch, self.maxsize, stack)
else: # dynamic key pops up in batch
_alloc_by_keys_diff(self._meta, batch, self.maxsize, stack)
self._meta[ptr] = batch
return ptr, ep_rew, ep_len, ep_idx
def sample_index(self, batch_size: int) -> np.ndarray:
"""Get a random sample of index with size = batch_size.
Return all available indices in the buffer if batch_size is 0; return an empty
numpy array if batch_size < 0 or no available index can be sampled.
"""
if self.stack_num == 1 or not self._sample_avail: # most often case
if batch_size > 0:
return np.random.choice(self._size, batch_size)
elif batch_size == 0: # construct current available indices
return np.concatenate(
[np.arange(self._index, self._size), np.arange(self._index)]
)
else:
return np.array([], int)
else:
if batch_size < 0:
return np.array([], int)
all_indices = prev_indices = np.concatenate(
[np.arange(self._index, self._size), np.arange(self._index)]
)
for _ in range(self.stack_num - 2):
prev_indices = self.prev(prev_indices)
all_indices = all_indices[prev_indices != self.prev(prev_indices)]
if batch_size > 0:
return np.random.choice(all_indices, batch_size)
else:
return all_indices
def sample(self, batch_size: int) -> Tuple[Batch, np.ndarray]:
"""Get a random sample from buffer with size = batch_size.
Return all the data in the buffer if batch_size is 0.
:return: Sample data and its corresponding index inside the buffer.
"""
indices = self.sample_index(batch_size)
return self[indices], indices
def get(
self,
index: Union[int, List[int], np.ndarray],
key: str,
default_value: Any = None,
stack_num: Optional[int] = None,
) -> Union[Batch, np.ndarray]:
"""Return the stacked result.
E.g., if you set ``key = "obs", stack_num = 4, index = t``, it returns the
stacked result as ``[obs[t-3], obs[t-2], obs[t-1], obs[t]]``.
:param index: the index for getting stacked data.
:param str key: the key to get, should be one of the reserved_keys.
:param default_value: if the given key's data is not found and default_value is
set, return this default_value.
:param int stack_num: Default to self.stack_num.
"""
if key not in self._meta and default_value is not None:
return default_value
val = self._meta[key]
if stack_num is None:
stack_num = self.stack_num
try:
if stack_num == 1: # the most often case
return val[index]
stack: List[Any] = []
if isinstance(index, list):
indice = np.array(index)
else:
indice = index # type: ignore
for _ in range(stack_num):
stack = [val[indice]] + stack
indice = self.prev(indice)
if isinstance(val, Batch):
return Batch.stack(stack, axis=indice.ndim)
else:
return np.stack(stack, axis=indice.ndim)
except IndexError as e:
if not (isinstance(val, Batch) and val.is_empty()):
raise e # val != Batch()
return Batch()
def __getitem__(self, index: Union[slice, int, List[int], np.ndarray]) -> Batch:
"""Return a data batch: self[index].
If stack_num is larger than 1, return the stacked obs and obs_next with shape
(batch, len, ...).
"""
if isinstance(index, slice): # change slice to np array
# buffer[:] will get all available data
indice = self.sample_index(0) if index == slice(None) \
else self._indices[:len(self)][index]
else:
indice = index
# raise KeyError first instead of AttributeError,
# to support np.array([ReplayBuffer()])
obs = self.get(indice, "obs")
if self._save_obs_next:
obs_next = self.get(indice, "obs_next", Batch())
else:
obs_next = self.get(self.next(indice), "obs", Batch())
return Batch(
obs=obs,
act=self.act[indice],
rew=self.rew[indice],
done=self.done[indice],
obs_next=obs_next,
info=self.get(indice, "info", Batch()),
policy=self.get(indice, "policy", Batch()),
)