Tianshou/examples/box2d/lunarlander_dqn.py

149 lines
5.1 KiB
Python
Raw Normal View History

import argparse
import os
import pprint
import gymnasium as gym
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, VectorReplayBuffer
from tianshou.env import DummyVectorEnv, SubprocVectorEnv
from tianshou.policy import DQNPolicy
from tianshou.trainer import offpolicy_trainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import Net
def get_args():
parser = argparse.ArgumentParser()
# the parameters are found by Optuna
parser.add_argument('--task', type=str, default='LunarLander-v2')
parser.add_argument('--seed', type=int, default=0)
parser.add_argument('--eps-test', type=float, default=0.01)
parser.add_argument('--eps-train', type=float, default=0.73)
parser.add_argument('--buffer-size', type=int, default=100000)
parser.add_argument('--lr', type=float, default=0.013)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--n-step', type=int, default=4)
parser.add_argument('--target-update-freq', type=int, default=500)
parser.add_argument('--epoch', type=int, default=10)
parser.add_argument('--step-per-epoch', type=int, default=80000)
parser.add_argument('--step-per-collect', type=int, default=16)
parser.add_argument('--update-per-step', type=float, default=0.0625)
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--hidden-sizes', type=int, nargs='*', default=[128, 128])
parser.add_argument(
'--dueling-q-hidden-sizes', type=int, nargs='*', default=[128, 128]
)
parser.add_argument(
'--dueling-v-hidden-sizes', type=int, nargs='*', default=[128, 128]
)
parser.add_argument('--training-num', type=int, default=16)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument(
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
)
return parser.parse_args()
def test_dqn(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
# train_envs = gym.make(args.task)
# you can also use tianshou.env.SubprocVectorEnv
train_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)]
)
# test_envs = gym.make(args.task)
test_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)]
)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
Q_param = {"hidden_sizes": args.dueling_q_hidden_sizes}
V_param = {"hidden_sizes": args.dueling_v_hidden_sizes}
net = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
device=args.device,
dueling_param=(Q_param, V_param)
).to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
policy = DQNPolicy(
net,
optim,
args.gamma,
args.n_step,
target_update_freq=args.target_update_freq
)
# collector
train_collector = Collector(
policy,
train_envs,
VectorReplayBuffer(args.buffer_size, len(train_envs)),
exploration_noise=True
)
test_collector = Collector(policy, test_envs, exploration_noise=True)
# policy.set_eps(1)
train_collector.collect(n_step=args.batch_size * args.training_num)
# log
log_path = os.path.join(args.logdir, args.task, 'dqn')
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer)
def save_best_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(mean_rewards):
return mean_rewards >= env.spec.reward_threshold
def train_fn(epoch, env_step): # exp decay
eps = max(args.eps_train * (1 - 5e-6)**env_step, args.eps_test)
policy.set_eps(eps)
def test_fn(epoch, env_step):
policy.set_eps(args.eps_test)
# trainer
result = offpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
args.step_per_collect,
args.test_num,
args.batch_size,
update_per_step=args.update_per_step,
stop_fn=stop_fn,
train_fn=train_fn,
test_fn=test_fn,
save_best_fn=save_best_fn,
logger=logger
)
assert stop_fn(result['best_reward'])
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
policy.eval()
policy.set_eps(args.eps_test)
test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=args.test_num, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
if __name__ == '__main__':
test_dqn(get_args())