Tianshou/test/modelbased/test_dqn_icm.py

204 lines
6.9 KiB
Python
Raw Normal View History

2022-01-14 10:43:48 -08:00
import argparse
import os
import pprint
import gymnasium as gym
2022-01-14 10:43:48 -08:00
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import Collector, PrioritizedVectorReplayBuffer, VectorReplayBuffer
from tianshou.env import DummyVectorEnv
from tianshou.policy import DQNPolicy, ICMPolicy
from tianshou.trainer import offpolicy_trainer
from tianshou.utils import TensorboardLogger
from tianshou.utils.net.common import MLP, Net
from tianshou.utils.net.discrete import IntrinsicCuriosityModule
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='CartPole-v0')
2022-03-04 03:35:39 +01:00
parser.add_argument('--reward-threshold', type=float, default=None)
2022-01-14 10:43:48 -08:00
parser.add_argument('--seed', type=int, default=1626)
parser.add_argument('--eps-test', type=float, default=0.05)
parser.add_argument('--eps-train', type=float, default=0.1)
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--gamma', type=float, default=0.9)
parser.add_argument('--n-step', type=int, default=3)
parser.add_argument('--target-update-freq', type=int, default=320)
parser.add_argument('--epoch', type=int, default=20)
parser.add_argument('--step-per-epoch', type=int, default=10000)
parser.add_argument('--step-per-collect', type=int, default=10)
parser.add_argument('--update-per-step', type=float, default=0.1)
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument(
'--hidden-sizes', type=int, nargs='*', default=[128, 128, 128, 128]
)
parser.add_argument('--training-num', type=int, default=10)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
parser.add_argument('--prioritized-replay', action="store_true", default=False)
parser.add_argument('--alpha', type=float, default=0.6)
parser.add_argument('--beta', type=float, default=0.4)
parser.add_argument(
'--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu'
)
parser.add_argument(
'--lr-scale',
type=float,
default=1.,
help='use intrinsic curiosity module with this lr scale'
)
parser.add_argument(
'--reward-scale',
type=float,
default=0.01,
help='scaling factor for intrinsic curiosity reward'
)
parser.add_argument(
'--forward-loss-weight',
type=float,
default=0.2,
help='weight for the forward model loss in ICM'
)
args = parser.parse_known_args()[0]
return args
def test_dqn_icm(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
2022-03-04 03:35:39 +01:00
if args.reward_threshold is None:
default_reward_threshold = {"CartPole-v0": 195}
args.reward_threshold = default_reward_threshold.get(
args.task, env.spec.reward_threshold
)
2022-01-14 10:43:48 -08:00
# train_envs = gym.make(args.task)
# you can also use tianshou.env.SubprocVectorEnv
train_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)]
)
# test_envs = gym.make(args.task)
test_envs = DummyVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)]
)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# Q_param = V_param = {"hidden_sizes": [128]}
# model
net = Net(
args.state_shape,
args.action_shape,
hidden_sizes=args.hidden_sizes,
device=args.device,
# dueling=(Q_param, V_param),
).to(args.device)
optim = torch.optim.Adam(net.parameters(), lr=args.lr)
policy = DQNPolicy(
net,
optim,
args.gamma,
args.n_step,
target_update_freq=args.target_update_freq,
)
feature_dim = args.hidden_sizes[-1]
feature_net = MLP(
np.prod(args.state_shape),
output_dim=feature_dim,
hidden_sizes=args.hidden_sizes[:-1],
device=args.device
)
action_dim = np.prod(args.action_shape)
icm_net = IntrinsicCuriosityModule(
feature_net,
feature_dim,
action_dim,
hidden_sizes=args.hidden_sizes[-1:],
device=args.device
).to(args.device)
icm_optim = torch.optim.Adam(icm_net.parameters(), lr=args.lr)
policy = ICMPolicy(
policy, icm_net, icm_optim, args.lr_scale, args.reward_scale,
args.forward_loss_weight
)
# buffer
if args.prioritized_replay:
buf = PrioritizedVectorReplayBuffer(
args.buffer_size,
buffer_num=len(train_envs),
alpha=args.alpha,
beta=args.beta,
)
else:
buf = VectorReplayBuffer(args.buffer_size, buffer_num=len(train_envs))
# collector
train_collector = Collector(policy, train_envs, buf, exploration_noise=True)
test_collector = Collector(policy, test_envs, exploration_noise=True)
# policy.set_eps(1)
train_collector.collect(n_step=args.batch_size * args.training_num)
# log
log_path = os.path.join(args.logdir, args.task, 'dqn_icm')
writer = SummaryWriter(log_path)
logger = TensorboardLogger(writer)
def save_best_fn(policy):
2022-01-14 10:43:48 -08:00
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(mean_rewards):
2022-03-04 03:35:39 +01:00
return mean_rewards >= args.reward_threshold
2022-01-14 10:43:48 -08:00
def train_fn(epoch, env_step):
# eps annnealing, just a demo
if env_step <= 10000:
policy.set_eps(args.eps_train)
elif env_step <= 50000:
eps = args.eps_train - (env_step - 10000) / \
40000 * (0.9 * args.eps_train)
policy.set_eps(eps)
else:
policy.set_eps(0.1 * args.eps_train)
def test_fn(epoch, env_step):
policy.set_eps(args.eps_test)
# trainer
result = offpolicy_trainer(
policy,
train_collector,
test_collector,
args.epoch,
args.step_per_epoch,
args.step_per_collect,
args.test_num,
args.batch_size,
update_per_step=args.update_per_step,
train_fn=train_fn,
test_fn=test_fn,
stop_fn=stop_fn,
save_best_fn=save_best_fn,
2022-01-14 10:43:48 -08:00
logger=logger,
)
assert stop_fn(result['best_reward'])
if __name__ == '__main__':
pprint.pprint(result)
# Let's watch its performance!
env = gym.make(args.task)
policy.eval()
policy.set_eps(args.eps_test)
collector = Collector(policy, env)
result = collector.collect(n_episode=1, render=args.render)
rews, lens = result["rews"], result["lens"]
print(f"Final reward: {rews.mean()}, length: {lens.mean()}")
if __name__ == '__main__':
test_dqn_icm(get_args())