Tianshou/examples/mujoco/mujoco_sac.py

155 lines
6.3 KiB
Python
Raw Normal View History

2020-05-12 11:31:47 +08:00
import os
import gym
import torch
import pprint
import argparse
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import SACPolicy
from tianshou.env import SubprocVectorEnv
from tianshou.utils.net.common import Net
from tianshou.trainer import offpolicy_trainer
from tianshou.data import Collector, ReplayBuffer
from tianshou.utils.net.continuous import ActorProb, Critic
def get_args():
parser = argparse.ArgumentParser()
2020-11-09 16:43:55 +08:00
parser.add_argument('--task', type=str, default='Ant-v3')
parser.add_argument('--seed', type=int, default=1626)
2020-11-09 16:43:55 +08:00
parser.add_argument('--buffer-size', type=int, default=1000000)
parser.add_argument('--actor-lr', type=float, default=3e-4)
2020-11-09 16:43:55 +08:00
parser.add_argument('--critic-lr', type=float, default=3e-4)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--tau', type=float, default=0.005)
parser.add_argument('--alpha', type=float, default=0.2)
2020-11-09 16:43:55 +08:00
parser.add_argument('--auto-alpha', default=False, action='store_true')
parser.add_argument('--alpha-lr', type=float, default=3e-4)
parser.add_argument('--n-step', type=int, default=2)
parser.add_argument('--epoch', type=int, default=100)
2020-11-09 16:43:55 +08:00
parser.add_argument('--step-per-epoch', type=int, default=10000)
parser.add_argument('--collect-per-step', type=int, default=4)
parser.add_argument('--update-per-step', type=int, default=1)
parser.add_argument('--pre-collect-step', type=int, default=10000)
parser.add_argument('--batch-size', type=int, default=256)
parser.add_argument('--hidden-layer-size', type=int, default=256)
parser.add_argument('--layer-num', type=int, default=1)
2020-11-09 16:43:55 +08:00
parser.add_argument('--training-num', type=int, default=16)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument('--render', type=float, default=0.)
2020-11-09 16:43:55 +08:00
parser.add_argument('--log-interval', type=int, default=1000)
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
2020-11-09 16:43:55 +08:00
parser.add_argument('--resume-path', type=str, default=None)
parser.add_argument('--watch', default=False, action='store_true',
help='watch the play of pre-trained policy only')
return parser.parse_args()
def test_sac(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
2020-11-09 16:43:55 +08:00
print("Observations shape:", args.state_shape)
print("Actions shape:", args.action_shape)
print("Action range:", np.min(env.action_space.low),
np.max(env.action_space.high))
# train_envs = gym.make(args.task)
train_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.training_num)])
# test_envs = gym.make(args.task)
test_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)])
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
2020-11-09 16:43:55 +08:00
net = Net(args.layer_num, args.state_shape, device=args.device,
hidden_layer_size=args.hidden_layer_size)
actor = ActorProb(
2020-11-09 16:43:55 +08:00
net, args.action_shape, args.max_action, args.device, unbounded=True,
hidden_layer_size=args.hidden_layer_size, conditioned_sigma=True,
).to(args.device)
actor_optim = torch.optim.Adam(actor.parameters(), lr=args.actor_lr)
2020-11-09 16:43:55 +08:00
net_c1 = Net(args.layer_num, args.state_shape, args.action_shape,
concat=True, device=args.device,
hidden_layer_size=args.hidden_layer_size)
critic1 = Critic(
net_c1, args.device, hidden_layer_size=args.hidden_layer_size
).to(args.device)
critic1_optim = torch.optim.Adam(critic1.parameters(), lr=args.critic_lr)
2020-11-09 16:43:55 +08:00
net_c2 = Net(args.layer_num, args.state_shape, args.action_shape,
concat=True, device=args.device,
hidden_layer_size=args.hidden_layer_size)
critic2 = Critic(
net_c2, args.device, hidden_layer_size=args.hidden_layer_size
).to(args.device)
critic2_optim = torch.optim.Adam(critic2.parameters(), lr=args.critic_lr)
2020-11-09 16:43:55 +08:00
if args.auto_alpha:
target_entropy = -np.prod(env.action_space.shape)
log_alpha = torch.zeros(1, requires_grad=True, device=args.device)
alpha_optim = torch.optim.Adam([log_alpha], lr=args.alpha_lr)
args.alpha = (target_entropy, log_alpha, alpha_optim)
policy = SACPolicy(
actor, actor_optim, critic1, critic1_optim, critic2, critic2_optim,
action_range=[env.action_space.low[0], env.action_space.high[0]],
tau=args.tau, gamma=args.gamma, alpha=args.alpha,
2020-11-09 16:43:55 +08:00
estimation_step=args.n_step)
# load a previous policy
if args.resume_path:
policy.load_state_dict(torch.load(
args.resume_path, map_location=args.device
))
print("Loaded agent from: ", args.resume_path)
# collector
train_collector = Collector(
policy, train_envs, ReplayBuffer(args.buffer_size))
test_collector = Collector(policy, test_envs)
# log
2020-05-12 11:31:47 +08:00
log_path = os.path.join(args.logdir, args.task, 'sac')
writer = SummaryWriter(log_path)
2020-11-09 16:43:55 +08:00
def watch():
# watch agent's performance
print("Testing agent ...")
policy.eval()
test_envs.seed(args.seed)
test_collector.reset()
result = test_collector.collect(n_episode=[1] * args.test_num,
render=args.render)
pprint.pprint(result)
2020-05-12 11:31:47 +08:00
def save_fn(policy):
torch.save(policy.state_dict(), os.path.join(log_path, 'policy.pth'))
def stop_fn(mean_rewards):
2020-11-09 16:43:55 +08:00
return False
if args.watch:
watch()
exit(0)
# trainer
2020-11-09 16:43:55 +08:00
train_collector.collect(n_step=args.pre_collect_step, random=True)
result = offpolicy_trainer(
policy, train_collector, test_collector, args.epoch,
args.step_per_epoch, args.collect_per_step, args.test_num,
2020-11-09 16:43:55 +08:00
args.batch_size, args.update_per_step,
stop_fn=stop_fn, save_fn=save_fn, writer=writer,
log_interval=args.log_interval)
pprint.pprint(result)
watch()
if __name__ == '__main__':
test_sac()