45 lines
1.2 KiB
Python
45 lines
1.2 KiB
Python
|
from abc import ABC, abstractmethod
|
||
|
from collections.abc import Sequence
|
||
|
from dataclasses import dataclass
|
||
|
from typing import TypeAlias
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
|
||
|
from tianshou.highlevel.env import Environments
|
||
|
from tianshou.utils.net.common import Net
|
||
|
|
||
|
TDevice: TypeAlias = str | int | torch.device
|
||
|
|
||
|
|
||
|
def init_linear_orthogonal(module: torch.nn.Module):
|
||
|
"""Applies orthogonal initialization to linear layers of the given module and sets bias weights to 0.
|
||
|
|
||
|
:param module: the module whose submodules are to be processed
|
||
|
"""
|
||
|
for m in module.modules():
|
||
|
if isinstance(m, torch.nn.Linear):
|
||
|
torch.nn.init.orthogonal_(m.weight, gain=np.sqrt(2))
|
||
|
torch.nn.init.zeros_(m.bias)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class Module:
|
||
|
module: torch.nn.Module
|
||
|
output_dim: int
|
||
|
|
||
|
|
||
|
class ModuleFactory(ABC):
|
||
|
@abstractmethod
|
||
|
def create_module(self, envs: Environments, device: TDevice) -> Module:
|
||
|
pass
|
||
|
|
||
|
|
||
|
class ModuleFactoryNet(ModuleFactory):
|
||
|
def __init__(self, hidden_sizes: int | Sequence[int]):
|
||
|
self.hidden_sizes = hidden_sizes
|
||
|
|
||
|
def create_module(self, envs: Environments, device: TDevice) -> Module:
|
||
|
module = Net(envs.get_observation_shape())
|
||
|
return Module(module, module.output_dim)
|