Tianshou/test/test_ddpg.py

207 lines
8.3 KiB
Python
Raw Normal View History

2020-03-18 21:45:41 +08:00
import gym
import time
import tqdm
import torch
import argparse
import numpy as np
from torch import nn
from torch.utils.tensorboard import SummaryWriter
from tianshou.policy import DDPGPolicy
from tianshou.utils import tqdm_config, MovAvg
from tianshou.data import Collector, ReplayBuffer
from tianshou.env import VectorEnv, SubprocVectorEnv
2020-03-18 21:45:41 +08:00
class Actor(nn.Module):
def __init__(self, layer_num, state_shape, action_shape,
max_action, device='cpu'):
super().__init__()
self.device = device
self.model = [
nn.Linear(np.prod(state_shape), 128),
nn.ReLU(inplace=True)]
for i in range(layer_num):
self.model += [nn.Linear(128, 128), nn.ReLU(inplace=True)]
self.model += [nn.Linear(128, np.prod(action_shape))]
self.model = nn.Sequential(*self.model)
self._max = max_action
def forward(self, s, **kwargs):
s = torch.tensor(s, device=self.device, dtype=torch.float)
batch = s.shape[0]
s = s.view(batch, -1)
logits = self.model(s)
logits = self._max * torch.tanh(logits)
return logits, None
class Critic(nn.Module):
def __init__(self, layer_num, state_shape, action_shape, device='cpu'):
super().__init__()
self.device = device
self.model = [
nn.Linear(np.prod(state_shape) + np.prod(action_shape), 128),
nn.ReLU(inplace=True)]
for i in range(layer_num):
self.model += [nn.Linear(128, 128), nn.ReLU(inplace=True)]
self.model += [nn.Linear(128, 1)]
self.model = nn.Sequential(*self.model)
def forward(self, s, a):
s = torch.tensor(s, device=self.device, dtype=torch.float)
if isinstance(a, np.ndarray):
a = torch.tensor(a, device=self.device, dtype=torch.float)
batch = s.shape[0]
s = s.view(batch, -1)
a = a.view(batch, -1)
logits = self.model(torch.cat([s, a], dim=1))
return logits
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='Pendulum-v0')
parser.add_argument('--seed', type=int, default=1626)
parser.add_argument('--buffer-size', type=int, default=20000)
parser.add_argument('--actor-lr', type=float, default=1e-4)
parser.add_argument('--actor-wd', type=float, default=0)
parser.add_argument('--critic-lr', type=float, default=1e-3)
parser.add_argument('--critic-wd', type=float, default=1e-2)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--tau', type=float, default=0.005)
parser.add_argument('--exploration-noise', type=float, default=0.1)
parser.add_argument('--epoch', type=int, default=100)
parser.add_argument('--step-per-epoch', type=int, default=2400)
parser.add_argument('--collect-per-step', type=int, default=1)
parser.add_argument('--batch-size', type=int, default=128)
parser.add_argument('--layer-num', type=int, default=1)
parser.add_argument('--training-num', type=int, default=1)
parser.add_argument('--test-num', type=int, default=100)
parser.add_argument('--logdir', type=str, default='log')
parser.add_argument(
'--device', type=str,
default='cuda' if torch.cuda.is_available() else 'cpu')
args = parser.parse_known_args()[0]
return args
def test_ddpg(args=get_args()):
env = gym.make(args.task)
args.state_shape = env.observation_space.shape or env.observation_space.n
args.action_shape = env.action_space.shape or env.action_space.n
args.max_action = env.action_space.high[0]
# train_envs = gym.make(args.task)
train_envs = VectorEnv(
2020-03-18 21:45:41 +08:00
[lambda: gym.make(args.task) for _ in range(args.training_num)],
reset_after_done=True)
# test_envs = gym.make(args.task)
test_envs = SubprocVectorEnv(
[lambda: gym.make(args.task) for _ in range(args.test_num)],
reset_after_done=False)
# seed
np.random.seed(args.seed)
torch.manual_seed(args.seed)
train_envs.seed(args.seed)
test_envs.seed(args.seed)
# model
actor = Actor(
args.layer_num, args.state_shape, args.action_shape,
args.max_action, args.device
).to(args.device)
actor_optim = torch.optim.Adam(
actor.parameters(), lr=args.actor_lr, weight_decay=args.actor_wd)
critic = Critic(
args.layer_num, args.state_shape, args.action_shape, args.device
).to(args.device)
critic_optim = torch.optim.Adam(
critic.parameters(), lr=args.critic_lr, weight_decay=args.critic_wd)
policy = DDPGPolicy(
actor, actor_optim, critic, critic_optim,
[env.action_space.low[0], env.action_space.high[0]],
args.tau, args.gamma, args.exploration_noise)
# collector
training_collector = Collector(
policy, train_envs, ReplayBuffer(args.buffer_size), 1)
test_collector = Collector(policy, test_envs, stat_size=args.test_num)
# log
stat_a_loss = MovAvg()
stat_c_loss = MovAvg()
global_step = 0
writer = SummaryWriter(args.logdir)
best_epoch = -1
best_reward = -1e10
start_time = time.time()
# training_collector.collect(n_step=1000)
for epoch in range(1, 1 + args.epoch):
desc = f'Epoch #{epoch}'
# train
policy.train()
with tqdm.tqdm(
total=args.step_per_epoch, desc=desc, **tqdm_config) as t:
while t.n < t.total:
result = training_collector.collect(
n_step=args.collect_per_step)
for i in range(min(
result['n_step'] // args.collect_per_step,
t.total - t.n)):
t.update(1)
global_step += 1
actor_loss, critic_loss = policy.learn(
training_collector.sample(args.batch_size))
policy.sync_weight()
stat_a_loss.add(actor_loss)
stat_c_loss.add(critic_loss)
writer.add_scalar(
'reward', result['reward'], global_step=global_step)
writer.add_scalar(
'length', result['length'], global_step=global_step)
writer.add_scalar(
'actor_loss', stat_a_loss.get(),
global_step=global_step)
writer.add_scalar(
'critic_loss', stat_a_loss.get(),
global_step=global_step)
writer.add_scalar(
'speed', result['speed'], global_step=global_step)
t.set_postfix(actor_loss=f'{stat_a_loss.get():.6f}',
critic_loss=f'{stat_c_loss.get():.6f}',
reward=f'{result["reward"]:.6f}',
length=f'{result["length"]:.2f}',
speed=f'{result["speed"]:.2f}')
if t.n <= t.total:
t.update()
# eval
test_collector.reset_env()
test_collector.reset_buffer()
policy.eval()
result = test_collector.collect(n_episode=args.test_num)
if best_reward < result['reward']:
best_reward = result['reward']
best_epoch = epoch
print(f'Epoch #{epoch}: test_reward: {result["reward"]:.6f}, '
f'best_reward: {best_reward:.6f} in #{best_epoch}')
if args.task == 'Pendulum-v0' and best_reward >= -250:
break
if args.task == 'Pendulum-v0':
assert best_reward >= -250
training_collector.close()
test_collector.close()
if __name__ == '__main__':
train_cnt = training_collector.collect_step
test_cnt = test_collector.collect_step
duration = time.time() - start_time
print(f'Collect {train_cnt} training frame and {test_cnt} test frame '
f'in {duration:.2f}s, '
f'speed: {(train_cnt + test_cnt) / duration:.2f}it/s')
# Let's watch its performance!
env = gym.make(args.task)
test_collector = Collector(policy, env)
result = test_collector.collect(n_episode=1, render=1 / 35)
print(f'Final reward: {result["reward"]}, length: {result["length"]}')
test_collector.close()
if __name__ == '__main__':
test_ddpg()