Tianshou/examples/actor_critic_cartpole.py

91 lines
3.4 KiB
Python
Raw Normal View History

#!/usr/bin/env python
from __future__ import absolute_import
import tensorflow as tf
import time
import numpy as np
import gym
# our lib imports here! It's ok to append path in examples
import sys
sys.path.append('..')
from tianshou.core import losses
from tianshou.data.batch import Batch
import tianshou.data.advantage_estimation as advantage_estimation
import tianshou.core.policy.stochastic as policy # TODO: fix imports as zhusuan so that only need to import to policy
import tianshou.core.value_function.state_value as value_function
# for tutorial purpose, placeholders are explicitly appended with '_ph' suffix
if __name__ == '__main__':
env = gym.make('CartPole-v0')
observation_dim = env.observation_space.shape
action_dim = env.action_space.n
clip_param = 0.2
num_batches = 10
batch_size = 128
seed = 10
np.random.seed(seed)
tf.set_random_seed(seed)
### 1. build network with pure tf
observation_ph = tf.placeholder(tf.float32, shape=(None,) + observation_dim)
def my_network():
# placeholders defined in this function would be very difficult to manage
net = tf.layers.dense(observation_ph, 32, activation=tf.nn.tanh)
net = tf.layers.dense(net, 32, activation=tf.nn.tanh)
action_logtis = tf.layers.dense(net, action_dim, activation=None)
value = tf.layers.dense(net, 1, activation=None)
return action_logtis, value
# TODO: overriding seems not able to handle shared layers, unless a new class `SharedPolicyValue`
# maybe the most desired thing is to freely build policy and value function from any tensor?
# but for now, only the outputs of the network matters
### 2. build policy, critic, loss, optimizer
actor = policy.OnehotCategorical(my_network, observation_placeholder=observation_ph, weight_update=1)
critic = value_function.StateValue(my_network, observation_placeholder=observation_ph)
actor_loss = losses.REINFORCE(actor)
critic_loss = losses.state_value_mse(critic)
total_loss = actor_loss + critic_loss
optimizer = tf.train.AdamOptimizer(1e-4)
# this hack would be unnecessary if we have a `SharedPolicyValue` class, or hack the trainable_variables management
var_list = list(set(actor.trainable_variables + critic.trainable_variables))
train_op = optimizer.minimize(total_loss, var_list=var_list)
### 3. define data collection
data_collector = Batch(env, actor,
[advantage_estimation.gae_lambda(1, critic), advantage_estimation.nstep_return(1, critic)],
[actor, critic])
# TODO: refactor this, data_collector should be just the top-level abstraction
### 4. start training
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
sess.run(tf.global_variables_initializer())
start_time = time.time()
for i in range(100):
# collect data
data_collector.collect(num_episodes=20)
# print current return
print('Epoch {}:'.format(i))
data_collector.statistics()
# update network
for _ in range(num_batches):
feed_dict = data_collector.next_batch(batch_size)
sess.run(train_op, feed_dict=feed_dict)
print('Elapsed time: {:.1f} min'.format((time.time() - start_time) / 60))