Tianshou/tianshou/env/venvs.py

337 lines
13 KiB
Python
Raw Normal View History

import gym
import warnings
import numpy as np
from typing import List, Tuple, Union, Optional, Callable, Any
from tianshou.env.worker import EnvWorker, DummyEnvWorker, SubprocEnvWorker, \
RayEnvWorker
class BaseVectorEnv(gym.Env):
"""Base class for vectorized environments wrapper. Usage:
::
env_num = 8
envs = DummyVectorEnv([lambda: gym.make(task) for _ in range(env_num)])
assert len(envs) == env_num
It accepts a list of environment generators. In other words, an environment
generator ``efn`` of a specific task means that ``efn()`` returns the
environment of the given task, for example, ``gym.make(task)``.
All of the VectorEnv must inherit :class:`~tianshou.env.BaseVectorEnv`.
Here are some other usages:
::
envs.seed(2) # which is equal to the next line
envs.seed([2, 3, 4, 5, 6, 7, 8, 9]) # set specific seed for each env
obs = envs.reset() # reset all environments
obs = envs.reset([0, 5, 7]) # reset 3 specific environments
obs, rew, done, info = envs.step([1] * 8) # step synchronously
envs.render() # render all environments
envs.close() # close all environments
.. warning::
If you use your own environment, please make sure the ``seed`` method
is set up properly, e.g.,
::
def seed(self, seed):
np.random.seed(seed)
Otherwise, the outputs of these envs may be the same with each other.
:param env_fns: a list of callable envs, ``env_fns[i]()`` generates the ith
env.
:param worker_fn: a callable worker, ``worker_fn(env_fns[i])`` generates a
worker which contains this env.
:param int wait_num: use in asynchronous simulation if the time cost of
``env.step`` varies with time and synchronously waiting for all
environments to finish a step is time-wasting. In that case, we can
return when ``wait_num`` environments finish a step and keep on
simulation in these environments. If ``None``, asynchronous simulation
is disabled; else, ``1 <= wait_num <= env_num``.
:param float timeout: use in asynchronous simulation same as above, in each
vectorized step it only deal with those environments spending time
within ``timeout`` seconds.
"""
def __init__(self,
env_fns: List[Callable[[], gym.Env]],
worker_fn: Callable[[Callable[[], gym.Env]], EnvWorker],
wait_num: Optional[int] = None,
timeout: Optional[float] = None,
) -> None:
self._env_fns = env_fns
# A VectorEnv contains a pool of EnvWorkers, which corresponds to
# interact with the given envs (one worker <-> one env).
self.workers = [worker_fn(fn) for fn in env_fns]
self.worker_class = type(self.workers[0])
assert issubclass(self.worker_class, EnvWorker)
assert all([isinstance(w, self.worker_class) for w in self.workers])
self.env_num = len(env_fns)
self.wait_num = wait_num or len(env_fns)
assert 1 <= self.wait_num <= len(env_fns), \
f'wait_num should be in [1, {len(env_fns)}], but got {wait_num}'
self.timeout = timeout
assert self.timeout is None or self.timeout > 0, \
f'timeout is {timeout}, it should be positive if provided!'
self.is_async = self.wait_num != len(env_fns) or timeout is not None
self.waiting_conn = []
# environments in self.ready_id is actually ready
# but environments in self.waiting_id are just waiting when checked,
# and they may be ready now, but this is not known until we check it
# in the step() function
self.waiting_id = []
# all environments are ready in the beginning
self.ready_id = list(range(self.env_num))
self.is_closed = False
def _assert_is_not_closed(self) -> None:
assert not self.is_closed, f"Methods of {self.__class__.__name__} "\
"should not be called after close."
def __len__(self) -> int:
"""Return len(self), which is the number of environments."""
return self.env_num
def __getattribute__(self, key: str) -> Any:
"""Any class who inherits ``gym.Env`` will inherit some attributes,
like ``action_space``. However, we would like the attribute lookup to
go straight into the worker (in fact, this vector env's action_space
is always ``None``).
"""
if key in ['metadata', 'reward_range', 'spec', 'action_space',
'observation_space']: # reserved keys in gym.Env
return self.__getattr__(key)
else:
return super().__getattribute__(key)
def __getattr__(self, key: str) -> Any:
"""Try to retrieve an attribute from each individual wrapped
environment, if it does not belong to the wrapping vector environment
class.
"""
return [getattr(worker, key) for worker in self.workers]
def _wrap_id(
self, id: Optional[Union[int, List[int]]] = None) -> List[int]:
if id is None:
id = list(range(self.env_num))
elif np.isscalar(id):
id = [id]
return id
def _assert_id(
self, id: Optional[Union[int, List[int]]] = None) -> List[int]:
for i in id:
assert i not in self.waiting_id, \
f'Cannot interact with environment {i} which is stepping now.'
assert i in self.ready_id, \
f'Can only interact with ready environments {self.ready_id}.'
def reset(self, id: Optional[Union[int, List[int]]] = None) -> np.ndarray:
"""Reset the state of all the environments and return initial
observations if id is ``None``, otherwise reset the specific
environments with the given id, either an int or a list.
"""
self._assert_is_not_closed()
id = self._wrap_id(id)
if self.is_async:
self._assert_id(id)
obs = np.stack([self.workers[i].reset() for i in id])
return obs
def step(self,
action: Optional[np.ndarray],
id: Optional[Union[int, List[int]]] = None
) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
"""Run one timestep of all the environments dynamics if id is "None",
otherwise run one timestep for some environments with given id, either
an int or a list. When the end of episode is reached, you are
responsible for calling reset(id) to reset this environments state.
Accept a batch of action and return a tuple (obs, rew, done, info).
:param numpy.ndarray action: a batch of action provided by the agent.
:return: A tuple including four items:
* ``obs`` a numpy.ndarray, the agent's observation of current \
environments
* ``rew`` a numpy.ndarray, the amount of rewards returned after \
previous actions
* ``done`` a numpy.ndarray, whether these episodes have ended, in \
which case further step() calls will return undefined results
* ``info`` a numpy.ndarray, contains auxiliary diagnostic \
information (helpful for debugging, and sometimes learning)
For the async simulation:
Provide the given action to the environments. The action sequence
should correspond to the ``id`` argument, and the ``id`` argument
should be a subset of the ``env_id`` in the last returned ``info``
(initially they are env_ids of all the environments). If action is
``None``, fetch unfinished step() calls instead.
"""
self._assert_is_not_closed()
id = self._wrap_id(id)
if not self.is_async:
assert len(action) == len(id)
for i, j in enumerate(id):
self.workers[j].send_action(action[i])
result = [self.workers[j].get_result() for j in id]
else:
if action is not None:
self._assert_id(id)
assert len(action) == len(id)
for i, (act, env_id) in enumerate(zip(action, id)):
self.workers[env_id].send_action(act)
self.waiting_conn.append(self.workers[env_id])
self.waiting_id.append(env_id)
self.ready_id = [x for x in self.ready_id if x not in id]
ready_conns, result = [], []
while not ready_conns:
ready_conns = self.worker_class.wait(
self.waiting_conn, self.wait_num, self.timeout)
for conn in ready_conns:
waiting_index = self.waiting_conn.index(conn)
self.waiting_conn.pop(waiting_index)
env_id = self.waiting_id.pop(waiting_index)
obs, rew, done, info = conn.get_result()
info["env_id"] = env_id
result.append((obs, rew, done, info))
self.ready_id.append(env_id)
return list(map(np.stack, zip(*result)))
def seed(self,
seed: Optional[Union[int, List[int]]] = None) -> List[List[int]]:
"""Set the seed for all environments.
Accept ``None``, an int (which will extend ``i`` to
``[i, i + 1, i + 2, ...]``) or a list.
:return: The list of seeds used in this env's random number generators.
The first value in the list should be the "main" seed, or the value
which a reproducer pass to "seed".
"""
self._assert_is_not_closed()
if np.isscalar(seed):
seed = [seed + _ for _ in range(self.env_num)]
elif seed is None:
seed = [seed] * self.env_num
return [w.seed(s) for w, s in zip(self.workers, seed)]
def render(self, **kwargs) -> List[Any]:
"""Render all of the environments."""
self._assert_is_not_closed()
if self.is_async and len(self.waiting_id) > 0:
raise RuntimeError(
f"Environments {self.waiting_id} are still "
f"stepping, cannot render them now.")
return [w.render(**kwargs) for w in self.workers]
def close(self) -> None:
"""Close all of the environments. This function will be called only
once (if not, it will be called during garbage collected). This way,
``close`` of all workers can be assured.
"""
self._assert_is_not_closed()
for w in self.workers:
w.close()
self.is_closed = True
def __del__(self) -> None:
if not self.is_closed:
self.close()
class DummyVectorEnv(BaseVectorEnv):
"""Dummy vectorized environment wrapper, implemented in for-loop.
.. seealso::
Please refer to :class:`~tianshou.env.BaseVectorEnv` for more detailed
explanation.
"""
def __init__(self, env_fns: List[Callable[[], gym.Env]],
wait_num: Optional[int] = None,
timeout: Optional[float] = None) -> None:
super().__init__(env_fns, DummyEnvWorker,
wait_num=wait_num, timeout=timeout)
class VectorEnv(DummyVectorEnv):
def __init__(self, *args, **kwargs) -> None:
warnings.warn(
'VectorEnv is renamed to DummyVectorEnv, and will be removed in '
'0.3. Use DummyVectorEnv instead!', Warning)
super().__init__(*args, **kwargs)
class SubprocVectorEnv(BaseVectorEnv):
"""Vectorized environment wrapper based on subprocess.
.. seealso::
Please refer to :class:`~tianshou.env.BaseVectorEnv` for more detailed
explanation.
"""
def __init__(self, env_fns: List[Callable[[], gym.Env]],
wait_num: Optional[int] = None,
timeout: Optional[float] = None) -> None:
def worker_fn(fn):
return SubprocEnvWorker(fn, share_memory=False)
super().__init__(env_fns, worker_fn,
wait_num=wait_num, timeout=timeout)
class ShmemVectorEnv(BaseVectorEnv):
"""Optimized version of SubprocVectorEnv which uses shared variables to
communicate observations. ShmemVectorEnv has exactly the same API as
SubprocVectorEnv.
.. seealso::
Please refer to :class:`~tianshou.env.SubprocVectorEnv` for more
detailed explanation.
"""
def __init__(self, env_fns: List[Callable[[], gym.Env]],
wait_num: Optional[int] = None,
timeout: Optional[float] = None) -> None:
def worker_fn(fn):
return SubprocEnvWorker(fn, share_memory=True)
super().__init__(env_fns, worker_fn,
wait_num=wait_num, timeout=timeout)
class RayVectorEnv(BaseVectorEnv):
"""Vectorized environment wrapper based on
`ray <https://github.com/ray-project/ray>`_. This is a choice to run
distributed environments in a cluster.
.. seealso::
Please refer to :class:`~tianshou.env.BaseVectorEnv` for more detailed
explanation.
"""
def __init__(self, env_fns: List[Callable[[], gym.Env]],
wait_num: Optional[int] = None,
timeout: Optional[float] = None) -> None:
try:
import ray
except ImportError as e:
raise ImportError(
'Please install ray to support RayVectorEnv: pip install ray'
) from e
if not ray.is_initialized():
ray.init()
super().__init__(env_fns, RayEnvWorker,
wait_num=wait_num, timeout=timeout)