55 lines
1.7 KiB
Python
55 lines
1.7 KiB
Python
|
import gym
|
||
|
import numpy as np
|
||
|
from typing import List, Callable, Tuple, Optional, Any
|
||
|
|
||
|
from tianshou.env.worker import EnvWorker
|
||
|
|
||
|
try:
|
||
|
import ray
|
||
|
except ImportError:
|
||
|
pass
|
||
|
|
||
|
|
||
|
class RayEnvWorker(EnvWorker):
|
||
|
"""Ray worker used in RayVectorEnv."""
|
||
|
|
||
|
def __init__(self, env_fn: Callable[[], gym.Env]) -> None:
|
||
|
super().__init__(env_fn)
|
||
|
self.env = ray.remote(gym.Wrapper).options(num_cpus=0).remote(env_fn())
|
||
|
|
||
|
def __getattr__(self, key: str):
|
||
|
return ray.get(self.env.__getattr__.remote(key))
|
||
|
|
||
|
def reset(self) -> Any:
|
||
|
return ray.get(self.env.reset.remote())
|
||
|
|
||
|
@staticmethod
|
||
|
def wait(workers: List['RayEnvWorker'],
|
||
|
wait_num: int,
|
||
|
timeout: Optional[float] = None) -> List['RayEnvWorker']:
|
||
|
results = [x.result for x in workers]
|
||
|
ready_results, _ = ray.wait(results,
|
||
|
num_returns=wait_num, timeout=timeout)
|
||
|
return [workers[results.index(result)] for result in ready_results]
|
||
|
|
||
|
def send_action(self, action: np.ndarray) -> None:
|
||
|
# self.action is actually a handle
|
||
|
self.result = self.env.step.remote(action)
|
||
|
|
||
|
def get_result(self) -> Tuple[
|
||
|
np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
|
||
|
return ray.get(self.result)
|
||
|
|
||
|
def seed(self, seed: Optional[int] = None) -> List[int]:
|
||
|
if hasattr(self.env, 'seed'):
|
||
|
return ray.get(self.env.seed.remote(seed))
|
||
|
return None
|
||
|
|
||
|
def render(self, **kwargs) -> Any:
|
||
|
if hasattr(self.env, 'render'):
|
||
|
return ray.get(self.env.render.remote(**kwargs))
|
||
|
return None
|
||
|
|
||
|
def close_env(self) -> None:
|
||
|
ray.get(self.env.close.remote())
|