2020-03-21 10:58:01 +08:00
|
|
|
import torch
|
|
|
|
import numpy as np
|
|
|
|
from torch import nn
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
|
|
class Net(nn.Module):
|
|
|
|
def __init__(self, layer_num, state_shape, action_shape=0, device='cpu'):
|
|
|
|
super().__init__()
|
|
|
|
self.device = device
|
|
|
|
self.model = [
|
|
|
|
nn.Linear(np.prod(state_shape), 128),
|
|
|
|
nn.ReLU(inplace=True)]
|
|
|
|
for i in range(layer_num):
|
|
|
|
self.model += [nn.Linear(128, 128), nn.ReLU(inplace=True)]
|
|
|
|
if action_shape:
|
|
|
|
self.model += [nn.Linear(128, np.prod(action_shape))]
|
|
|
|
self.model = nn.Sequential(*self.model)
|
|
|
|
|
|
|
|
def forward(self, s, state=None, info={}):
|
2020-03-25 14:08:28 +08:00
|
|
|
if not isinstance(s, torch.Tensor):
|
|
|
|
s = torch.tensor(s, device=self.device, dtype=torch.float)
|
2020-03-21 10:58:01 +08:00
|
|
|
batch = s.shape[0]
|
|
|
|
s = s.view(batch, -1)
|
|
|
|
logits = self.model(s)
|
|
|
|
return logits, state
|
|
|
|
|
|
|
|
|
|
|
|
class Actor(nn.Module):
|
|
|
|
def __init__(self, preprocess_net, action_shape):
|
|
|
|
super().__init__()
|
|
|
|
self.preprocess = preprocess_net
|
|
|
|
self.last = nn.Linear(128, np.prod(action_shape))
|
|
|
|
|
|
|
|
def forward(self, s, state=None, info={}):
|
|
|
|
logits, h = self.preprocess(s, state)
|
|
|
|
logits = F.softmax(self.last(logits), dim=-1)
|
|
|
|
return logits, h
|
|
|
|
|
|
|
|
|
|
|
|
class Critic(nn.Module):
|
|
|
|
def __init__(self, preprocess_net):
|
|
|
|
super().__init__()
|
|
|
|
self.preprocess = preprocess_net
|
|
|
|
self.last = nn.Linear(128, 1)
|
|
|
|
|
|
|
|
def forward(self, s):
|
|
|
|
logits, h = self.preprocess(s, None)
|
|
|
|
logits = self.last(logits)
|
|
|
|
return logits
|