51 lines
1.5 KiB
Python
Raw Normal View History

2020-03-21 10:58:01 +08:00
import torch
import numpy as np
from torch import nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self, layer_num, state_shape, action_shape=0, device='cpu'):
super().__init__()
self.device = device
self.model = [
nn.Linear(np.prod(state_shape), 128),
nn.ReLU(inplace=True)]
for i in range(layer_num):
self.model += [nn.Linear(128, 128), nn.ReLU(inplace=True)]
if action_shape:
self.model += [nn.Linear(128, np.prod(action_shape))]
self.model = nn.Sequential(*self.model)
def forward(self, s, state=None, info={}):
2020-03-25 14:08:28 +08:00
if not isinstance(s, torch.Tensor):
s = torch.tensor(s, device=self.device, dtype=torch.float)
2020-03-21 10:58:01 +08:00
batch = s.shape[0]
s = s.view(batch, -1)
logits = self.model(s)
return logits, state
class Actor(nn.Module):
def __init__(self, preprocess_net, action_shape):
super().__init__()
self.preprocess = preprocess_net
self.last = nn.Linear(128, np.prod(action_shape))
def forward(self, s, state=None, info={}):
logits, h = self.preprocess(s, state)
logits = F.softmax(self.last(logits), dim=-1)
return logits, h
class Critic(nn.Module):
def __init__(self, preprocess_net):
super().__init__()
self.preprocess = preprocess_net
self.last = nn.Linear(128, 1)
def forward(self, s):
logits, h = self.preprocess(s, None)
logits = self.last(logits)
return logits