2021-09-03 05:05:04 +08:00
|
|
|
from typing import Any, Dict, Optional, Union
|
|
|
|
|
2021-05-28 18:44:23 -07:00
|
|
|
import numpy as np
|
2021-09-03 05:05:04 +08:00
|
|
|
import torch
|
2021-05-28 18:44:23 -07:00
|
|
|
import torch.nn.functional as F
|
|
|
|
|
|
|
|
from tianshou.data import Batch, to_numpy
|
2021-09-03 05:05:04 +08:00
|
|
|
from tianshou.policy import QRDQNPolicy
|
2021-05-28 18:44:23 -07:00
|
|
|
|
|
|
|
|
|
|
|
class IQNPolicy(QRDQNPolicy):
|
|
|
|
"""Implementation of Implicit Quantile Network. arXiv:1806.06923.
|
|
|
|
|
|
|
|
:param torch.nn.Module model: a model following the rules in
|
|
|
|
:class:`~tianshou.policy.BasePolicy`. (s -> logits)
|
|
|
|
:param torch.optim.Optimizer optim: a torch.optim for optimizing the model.
|
|
|
|
:param float discount_factor: in [0, 1].
|
|
|
|
:param int sample_size: the number of samples for policy evaluation.
|
|
|
|
Default to 32.
|
|
|
|
:param int online_sample_size: the number of samples for online model
|
|
|
|
in training. Default to 8.
|
|
|
|
:param int target_sample_size: the number of samples for target model
|
|
|
|
in training. Default to 8.
|
|
|
|
:param int estimation_step: the number of steps to look ahead. Default to 1.
|
|
|
|
:param int target_update_freq: the target network update frequency (0 if
|
|
|
|
you do not use the target network).
|
|
|
|
:param bool reward_normalization: normalize the reward to Normal(0, 1).
|
|
|
|
Default to False.
|
|
|
|
|
|
|
|
.. seealso::
|
|
|
|
|
|
|
|
Please refer to :class:`~tianshou.policy.QRDQNPolicy` for more detailed
|
|
|
|
explanation.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
model: torch.nn.Module,
|
|
|
|
optim: torch.optim.Optimizer,
|
|
|
|
discount_factor: float = 0.99,
|
|
|
|
sample_size: int = 32,
|
|
|
|
online_sample_size: int = 8,
|
|
|
|
target_sample_size: int = 8,
|
|
|
|
estimation_step: int = 1,
|
|
|
|
target_update_freq: int = 0,
|
|
|
|
reward_normalization: bool = False,
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> None:
|
2021-09-03 05:05:04 +08:00
|
|
|
super().__init__(
|
|
|
|
model, optim, discount_factor, sample_size, estimation_step,
|
|
|
|
target_update_freq, reward_normalization, **kwargs
|
|
|
|
)
|
2021-05-28 18:44:23 -07:00
|
|
|
assert sample_size > 1, "sample_size should be greater than 1"
|
|
|
|
assert online_sample_size > 1, "online_sample_size should be greater than 1"
|
|
|
|
assert target_sample_size > 1, "target_sample_size should be greater than 1"
|
|
|
|
self._sample_size = sample_size # for policy eval
|
|
|
|
self._online_sample_size = online_sample_size
|
|
|
|
self._target_sample_size = target_sample_size
|
|
|
|
|
|
|
|
def forward(
|
|
|
|
self,
|
|
|
|
batch: Batch,
|
|
|
|
state: Optional[Union[dict, Batch, np.ndarray]] = None,
|
|
|
|
model: str = "model",
|
|
|
|
input: str = "obs",
|
|
|
|
**kwargs: Any,
|
|
|
|
) -> Batch:
|
|
|
|
if model == "model_old":
|
|
|
|
sample_size = self._target_sample_size
|
|
|
|
elif self.training:
|
|
|
|
sample_size = self._online_sample_size
|
|
|
|
else:
|
|
|
|
sample_size = self._sample_size
|
|
|
|
model = getattr(self, model)
|
|
|
|
obs = batch[input]
|
|
|
|
obs_ = obs.obs if hasattr(obs, "obs") else obs
|
2021-09-03 05:05:04 +08:00
|
|
|
(logits,
|
|
|
|
taus), h = model(obs_, sample_size=sample_size, state=state, info=batch.info)
|
2021-05-28 18:44:23 -07:00
|
|
|
q = self.compute_q_value(logits, getattr(obs, "mask", None))
|
|
|
|
if not hasattr(self, "max_action_num"):
|
|
|
|
self.max_action_num = q.shape[1]
|
|
|
|
act = to_numpy(q.max(dim=1)[1])
|
|
|
|
return Batch(logits=logits, act=act, state=h, taus=taus)
|
|
|
|
|
|
|
|
def learn(self, batch: Batch, **kwargs: Any) -> Dict[str, float]:
|
|
|
|
if self._target and self._iter % self._freq == 0:
|
|
|
|
self.sync_weight()
|
|
|
|
self.optim.zero_grad()
|
|
|
|
weight = batch.pop("weight", 1.0)
|
|
|
|
out = self(batch)
|
|
|
|
curr_dist, taus = out.logits, out.taus
|
|
|
|
act = batch.act
|
|
|
|
curr_dist = curr_dist[np.arange(len(act)), act, :].unsqueeze(2)
|
|
|
|
target_dist = batch.returns.unsqueeze(1)
|
|
|
|
# calculate each element's difference between curr_dist and target_dist
|
|
|
|
u = F.smooth_l1_loss(target_dist, curr_dist, reduction="none")
|
2021-09-03 05:05:04 +08:00
|
|
|
huber_loss = (
|
|
|
|
u *
|
|
|
|
(taus.unsqueeze(2) -
|
|
|
|
(target_dist - curr_dist).detach().le(0.).float()).abs()
|
|
|
|
).sum(-1).mean(1)
|
2021-05-28 18:44:23 -07:00
|
|
|
loss = (huber_loss * weight).mean()
|
|
|
|
# ref: https://github.com/ku2482/fqf-iqn-qrdqn.pytorch/
|
|
|
|
# blob/master/fqf_iqn_qrdqn/agent/qrdqn_agent.py L130
|
|
|
|
batch.weight = u.detach().abs().sum(-1).mean(1) # prio-buffer
|
|
|
|
loss.backward()
|
|
|
|
self.optim.step()
|
|
|
|
self._iter += 1
|
|
|
|
return {"loss": loss.item()}
|