Feature/dataclasses (#996)
This PR adds strict typing to the output of `update` and `learn` in all
policies. This will likely be the last large refactoring PR before the
next release (0.6.0, not 1.0.0), so it requires some attention. Several
difficulties were encountered on the path to that goal:
1. The policy hierarchy is actually "broken" in the sense that the keys
of dicts that were output by `learn` did not follow the same enhancement
(inheritance) pattern as the policies. This is a real problem and should
be addressed in the near future. Generally, several aspects of the
policy design and hierarchy might deserve a dedicated discussion.
2. Each policy needs to be generic in the stats return type, because one
might want to extend it at some point and then also extend the stats.
Even within the source code base this pattern is necessary in many
places.
3. The interaction between learn and update is a bit quirky, we
currently handle it by having update modify special field inside
TrainingStats, whereas all other fields are handled by learn.
4. The IQM module is a policy wrapper and required a
TrainingStatsWrapper. The latter relies on a bunch of black magic.
They were addressed by:
1. Live with the broken hierarchy, which is now made visible by bounds
in generics. We use type: ignore where appropriate.
2. Make all policies generic with bounds following the policy
inheritance hierarchy (which is incorrect, see above). We experimented a
bit with nested TrainingStats classes, but that seemed to add more
complexity and be harder to understand. Unfortunately, mypy thinks that
the code below is wrong, wherefore we have to add `type: ignore` to the
return of each `learn`
```python
T = TypeVar("T", bound=int)
def f() -> T:
return 3
```
3. See above
4. Write representative tests for the `TrainingStatsWrapper`. Still, the
black magic might cause nasty surprises down the line (I am not proud of
it)...
Closes #933
---------
Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
|
|
|
from typing import Any, Literal, Protocol, Self, cast, overload
|
2021-09-03 05:05:04 +08:00
|
|
|
|
2020-07-21 14:59:49 +08:00
|
|
|
import numpy as np
|
Feature/dataclasses (#996)
This PR adds strict typing to the output of `update` and `learn` in all
policies. This will likely be the last large refactoring PR before the
next release (0.6.0, not 1.0.0), so it requires some attention. Several
difficulties were encountered on the path to that goal:
1. The policy hierarchy is actually "broken" in the sense that the keys
of dicts that were output by `learn` did not follow the same enhancement
(inheritance) pattern as the policies. This is a real problem and should
be addressed in the near future. Generally, several aspects of the
policy design and hierarchy might deserve a dedicated discussion.
2. Each policy needs to be generic in the stats return type, because one
might want to extend it at some point and then also extend the stats.
Even within the source code base this pattern is necessary in many
places.
3. The interaction between learn and update is a bit quirky, we
currently handle it by having update modify special field inside
TrainingStats, whereas all other fields are handled by learn.
4. The IQM module is a policy wrapper and required a
TrainingStatsWrapper. The latter relies on a bunch of black magic.
They were addressed by:
1. Live with the broken hierarchy, which is now made visible by bounds
in generics. We use type: ignore where appropriate.
2. Make all policies generic with bounds following the policy
inheritance hierarchy (which is incorrect, see above). We experimented a
bit with nested TrainingStats classes, but that seemed to add more
complexity and be harder to understand. Unfortunately, mypy thinks that
the code below is wrong, wherefore we have to add `type: ignore` to the
return of each `learn`
```python
T = TypeVar("T", bound=int)
def f() -> T:
return 3
```
3. See above
4. Write representative tests for the `TrainingStatsWrapper`. Still, the
black magic might cause nasty surprises down the line (I am not proud of
it)...
Closes #933
---------
Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
|
|
|
from overrides import override
|
2020-07-21 14:59:49 +08:00
|
|
|
|
|
|
|
from tianshou.data import Batch, ReplayBuffer
|
Feature/dataclasses (#996)
This PR adds strict typing to the output of `update` and `learn` in all
policies. This will likely be the last large refactoring PR before the
next release (0.6.0, not 1.0.0), so it requires some attention. Several
difficulties were encountered on the path to that goal:
1. The policy hierarchy is actually "broken" in the sense that the keys
of dicts that were output by `learn` did not follow the same enhancement
(inheritance) pattern as the policies. This is a real problem and should
be addressed in the near future. Generally, several aspects of the
policy design and hierarchy might deserve a dedicated discussion.
2. Each policy needs to be generic in the stats return type, because one
might want to extend it at some point and then also extend the stats.
Even within the source code base this pattern is necessary in many
places.
3. The interaction between learn and update is a bit quirky, we
currently handle it by having update modify special field inside
TrainingStats, whereas all other fields are handled by learn.
4. The IQM module is a policy wrapper and required a
TrainingStatsWrapper. The latter relies on a bunch of black magic.
They were addressed by:
1. Live with the broken hierarchy, which is now made visible by bounds
in generics. We use type: ignore where appropriate.
2. Make all policies generic with bounds following the policy
inheritance hierarchy (which is incorrect, see above). We experimented a
bit with nested TrainingStats classes, but that seemed to add more
complexity and be harder to understand. Unfortunately, mypy thinks that
the code below is wrong, wherefore we have to add `type: ignore` to the
return of each `learn`
```python
T = TypeVar("T", bound=int)
def f() -> T:
return 3
```
3. See above
4. Write representative tests for the `TrainingStatsWrapper`. Still, the
black magic might cause nasty surprises down the line (I am not proud of
it)...
Closes #933
---------
Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
|
|
|
from tianshou.data.batch import BatchProtocol, IndexType
|
Improved typing and reduced duplication (#912)
# Goals of the PR
The PR introduces **no changes to functionality**, apart from improved
input validation here and there. The main goals are to reduce some
complexity of the code, to improve types and IDE completions, and to
extend documentation and block comments where appropriate. Because of
the change to the trainer interfaces, many files are affected (more
details below), but still the overall changes are "small" in a certain
sense.
## Major Change 1 - BatchProtocol
**TL;DR:** One can now annotate which fields the batch is expected to
have on input params and which fields a returned batch has. Should be
useful for reading the code. getting meaningful IDE support, and
catching bugs with mypy. This annotation strategy will continue to work
if Batch is replaced by TensorDict or by something else.
**In more detail:** Batch itself has no fields and using it for
annotations is of limited informational power. Batches with fields are
not separate classes but instead instances of Batch directly, so there
is no type that could be used for annotation. Fortunately, python
`Protocol` is here for the rescue. With these changes we can now do
things like
```python
class ActionBatchProtocol(BatchProtocol):
logits: Sequence[Union[tuple, torch.Tensor]]
dist: torch.distributions.Distribution
act: torch.Tensor
state: Optional[torch.Tensor]
class RolloutBatchProtocol(BatchProtocol):
obs: torch.Tensor
obs_next: torch.Tensor
info: Dict[str, Any]
rew: torch.Tensor
terminated: torch.Tensor
truncated: torch.Tensor
class PGPolicy(BasePolicy):
...
def forward(
self,
batch: RolloutBatchProtocol,
state: Optional[Union[dict, Batch, np.ndarray]] = None,
**kwargs: Any,
) -> ActionBatchProtocol:
```
The IDE and mypy are now very helpful in finding errors and in
auto-completion, whereas before the tools couldn't assist in that at
all.
## Major Change 2 - remove duplication in trainer package
**TL;DR:** There was a lot of duplication between `BaseTrainer` and its
subclasses. Even worse, it was almost-duplication. There was also
interface fragmentation through things like `onpolicy_trainer`. Now this
duplication is gone and all downstream code was adjusted.
**In more detail:** Since this change affects a lot of code, I would
like to explain why I thought it to be necessary.
1. The subclasses of `BaseTrainer` just duplicated docstrings and
constructors. What's worse, they changed the order of args there, even
turning some kwargs of BaseTrainer into args. They also had the arg
`learning_type` which was passed as kwarg to the base class and was
unused there. This made things difficult to maintain, and in fact some
errors were already present in the duplicated docstrings.
2. The "functions" a la `onpolicy_trainer`, which just called the
`OnpolicyTrainer.run`, not only introduced interface fragmentation but
also completely obfuscated the docstring and interfaces. They themselves
had no dosctring and the interface was just `*args, **kwargs`, which
makes it impossible to understand what they do and which things can be
passed without reading their implementation, then reading the docstring
of the associated class, etc. Needless to say, mypy and IDEs provide no
support with such functions. Nevertheless, they were used everywhere in
the code-base. I didn't find the sacrifices in clarity and complexity
justified just for the sake of not having to write `.run()` after
instantiating a trainer.
3. The trainers are all very similar to each other. As for my
application I needed a new trainer, I wanted to understand their
structure. The similarity, however, was hard to discover since they were
all in separate modules and there was so much duplication. I kept
staring at the constructors for a while until I figured out that
essentially no changes to the superclass were introduced. Now they are
all in the same module and the similarities/differences between them are
much easier to grasp (in my opinion)
4. Because of (1), I had to manually change and check a lot of code,
which was very tedious and boring. This kind of work won't be necessary
in the future, since now IDEs can be used for changing signatures,
renaming args and kwargs, changing class names and so on.
I have some more reasons, but maybe the above ones are convincing
enough.
## Minor changes: improved input validation and types
I added input validation for things like `state` and `action_scaling`
(which only makes sense for continuous envs). After adding this, some
tests failed to pass this validation. There I added
`action_scaling=isinstance(env.action_space, Box)`, after which tests
were green. I don't know why the tests were green before, since action
scaling doesn't make sense for discrete actions. I guess some aspect was
not tested and didn't crash.
I also added Literal in some places, in particular for
`action_bound_method`. Now it is no longer allowed to pass an empty
string, instead one should pass `None`. Also here there is input
validation with clear error messages.
@Trinkle23897 The functional tests are green. I didn't want to fix the
formatting, since it will change in the next PR that will solve #914
anyway. I also found a whole bunch of code in `docs/_static`, which I
just deleted (shouldn't it be copied from the sources during docs build
instead of committed?). I also haven't adjusted the documentation yet,
which atm still mentions the trainers of the type
`onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()`
## Breaking Changes
The adjustments to the trainer package introduce breaking changes as
duplicated interfaces are deleted. However, it should be very easy for
users to adjust to them
---------
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
|
|
|
from tianshou.data.types import RolloutBatchProtocol
|
2021-09-03 05:05:04 +08:00
|
|
|
from tianshou.policy import BasePolicy
|
Feature/dataclasses (#996)
This PR adds strict typing to the output of `update` and `learn` in all
policies. This will likely be the last large refactoring PR before the
next release (0.6.0, not 1.0.0), so it requires some attention. Several
difficulties were encountered on the path to that goal:
1. The policy hierarchy is actually "broken" in the sense that the keys
of dicts that were output by `learn` did not follow the same enhancement
(inheritance) pattern as the policies. This is a real problem and should
be addressed in the near future. Generally, several aspects of the
policy design and hierarchy might deserve a dedicated discussion.
2. Each policy needs to be generic in the stats return type, because one
might want to extend it at some point and then also extend the stats.
Even within the source code base this pattern is necessary in many
places.
3. The interaction between learn and update is a bit quirky, we
currently handle it by having update modify special field inside
TrainingStats, whereas all other fields are handled by learn.
4. The IQM module is a policy wrapper and required a
TrainingStatsWrapper. The latter relies on a bunch of black magic.
They were addressed by:
1. Live with the broken hierarchy, which is now made visible by bounds
in generics. We use type: ignore where appropriate.
2. Make all policies generic with bounds following the policy
inheritance hierarchy (which is incorrect, see above). We experimented a
bit with nested TrainingStats classes, but that seemed to add more
complexity and be harder to understand. Unfortunately, mypy thinks that
the code below is wrong, wherefore we have to add `type: ignore` to the
return of each `learn`
```python
T = TypeVar("T", bound=int)
def f() -> T:
return 3
```
3. See above
4. Write representative tests for the `TrainingStatsWrapper`. Still, the
black magic might cause nasty surprises down the line (I am not proud of
it)...
Closes #933
---------
Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
|
|
|
from tianshou.policy.base import TLearningRateScheduler, TrainingStats
|
2020-07-21 14:59:49 +08:00
|
|
|
|
2022-02-25 11:05:02 -05:00
|
|
|
try:
|
|
|
|
from tianshou.env.pettingzoo_env import PettingZooEnv
|
|
|
|
except ImportError:
|
|
|
|
PettingZooEnv = None # type: ignore
|
|
|
|
|
2020-07-21 14:59:49 +08:00
|
|
|
|
Feature/dataclasses (#996)
This PR adds strict typing to the output of `update` and `learn` in all
policies. This will likely be the last large refactoring PR before the
next release (0.6.0, not 1.0.0), so it requires some attention. Several
difficulties were encountered on the path to that goal:
1. The policy hierarchy is actually "broken" in the sense that the keys
of dicts that were output by `learn` did not follow the same enhancement
(inheritance) pattern as the policies. This is a real problem and should
be addressed in the near future. Generally, several aspects of the
policy design and hierarchy might deserve a dedicated discussion.
2. Each policy needs to be generic in the stats return type, because one
might want to extend it at some point and then also extend the stats.
Even within the source code base this pattern is necessary in many
places.
3. The interaction between learn and update is a bit quirky, we
currently handle it by having update modify special field inside
TrainingStats, whereas all other fields are handled by learn.
4. The IQM module is a policy wrapper and required a
TrainingStatsWrapper. The latter relies on a bunch of black magic.
They were addressed by:
1. Live with the broken hierarchy, which is now made visible by bounds
in generics. We use type: ignore where appropriate.
2. Make all policies generic with bounds following the policy
inheritance hierarchy (which is incorrect, see above). We experimented a
bit with nested TrainingStats classes, but that seemed to add more
complexity and be harder to understand. Unfortunately, mypy thinks that
the code below is wrong, wherefore we have to add `type: ignore` to the
return of each `learn`
```python
T = TypeVar("T", bound=int)
def f() -> T:
return 3
```
3. See above
4. Write representative tests for the `TrainingStatsWrapper`. Still, the
black magic might cause nasty surprises down the line (I am not proud of
it)...
Closes #933
---------
Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
|
|
|
class MapTrainingStats(TrainingStats):
|
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
agent_id_to_stats: dict[str | int, TrainingStats],
|
|
|
|
train_time_aggregator: Literal["min", "max", "mean"] = "max",
|
|
|
|
) -> None:
|
|
|
|
self._agent_id_to_stats = agent_id_to_stats
|
|
|
|
train_times = [agent_stats.train_time for agent_stats in agent_id_to_stats.values()]
|
|
|
|
match train_time_aggregator:
|
|
|
|
case "max":
|
|
|
|
aggr_function = max
|
|
|
|
case "min":
|
|
|
|
aggr_function = min
|
|
|
|
case "mean":
|
|
|
|
aggr_function = np.mean # type: ignore
|
|
|
|
case _:
|
|
|
|
raise ValueError(
|
|
|
|
f"Unknown {train_time_aggregator=}",
|
|
|
|
)
|
|
|
|
self.train_time = aggr_function(train_times)
|
|
|
|
self.smoothed_loss = {}
|
|
|
|
|
|
|
|
@override
|
|
|
|
def get_loss_stats_dict(self) -> dict[str, float]:
|
|
|
|
"""Collects loss_stats_dicts from all agents, prepends agent_id to all keys, and joins results."""
|
|
|
|
result_dict = {}
|
|
|
|
for agent_id, stats in self._agent_id_to_stats.items():
|
|
|
|
agent_loss_stats_dict = stats.get_loss_stats_dict()
|
|
|
|
for k, v in agent_loss_stats_dict.items():
|
|
|
|
result_dict[f"{agent_id}/" + k] = v
|
|
|
|
return result_dict
|
|
|
|
|
|
|
|
|
|
|
|
class MAPRolloutBatchProtocol(RolloutBatchProtocol, Protocol):
|
|
|
|
# TODO: this might not be entirely correct.
|
|
|
|
# The whole MAP data processing pipeline needs more documentation and possibly some refactoring
|
|
|
|
@overload
|
|
|
|
def __getitem__(self, index: str) -> RolloutBatchProtocol:
|
|
|
|
...
|
|
|
|
|
|
|
|
@overload
|
|
|
|
def __getitem__(self, index: IndexType) -> Self:
|
|
|
|
...
|
|
|
|
|
|
|
|
def __getitem__(self, index: str | IndexType) -> Any:
|
|
|
|
...
|
|
|
|
|
|
|
|
|
2020-07-21 14:59:49 +08:00
|
|
|
class MultiAgentPolicyManager(BasePolicy):
|
2020-09-11 07:55:37 +08:00
|
|
|
"""Multi-agent policy manager for MARL.
|
|
|
|
|
|
|
|
This multi-agent policy manager accepts a list of
|
2020-07-21 14:59:49 +08:00
|
|
|
:class:`~tianshou.policy.BasePolicy`. It dispatches the batch data to each
|
|
|
|
of these policies when the "forward" is called. The same as "process_fn"
|
|
|
|
and "learn": it splits the data and feeds them to each policy. A figure in
|
|
|
|
:ref:`marl_example` can help you better understand this procedure.
|
2023-10-08 17:57:03 +02:00
|
|
|
|
|
|
|
:param policies: a list of policies.
|
|
|
|
:param env: a PettingZooEnv.
|
|
|
|
:param action_scaling: if True, scale the action from [-1, 1] to the range
|
|
|
|
of action_space. Only used if the action_space is continuous.
|
|
|
|
:param action_bound_method: method to bound action to range [-1, 1].
|
|
|
|
Only used if the action_space is continuous.
|
|
|
|
:param lr_scheduler: if not None, will be called in `policy.update()`.
|
2020-07-21 14:59:49 +08:00
|
|
|
"""
|
|
|
|
|
2023-10-08 17:57:03 +02:00
|
|
|
def __init__(
|
|
|
|
self,
|
|
|
|
*,
|
|
|
|
policies: list[BasePolicy],
|
|
|
|
# TODO: 1 why restrict to PettingZooEnv?
|
|
|
|
# TODO: 2 This is the only policy that takes an env in init, is it really needed?
|
|
|
|
env: PettingZooEnv,
|
|
|
|
action_scaling: bool = False,
|
|
|
|
action_bound_method: Literal["clip", "tanh"] | None = "clip",
|
|
|
|
lr_scheduler: TLearningRateScheduler | None = None,
|
|
|
|
) -> None:
|
|
|
|
super().__init__(
|
|
|
|
action_space=env.action_space,
|
|
|
|
observation_space=env.observation_space,
|
|
|
|
action_scaling=action_scaling,
|
|
|
|
action_bound_method=action_bound_method,
|
|
|
|
lr_scheduler=lr_scheduler,
|
|
|
|
)
|
2023-08-25 23:40:56 +02:00
|
|
|
assert len(policies) == len(env.agents), "One policy must be assigned for each agent."
|
2022-02-15 17:56:45 +03:00
|
|
|
|
|
|
|
self.agent_idx = env.agent_idx
|
2020-07-21 14:59:49 +08:00
|
|
|
for i, policy in enumerate(policies):
|
|
|
|
# agent_id 0 is reserved for the environment proxy
|
|
|
|
# (this MultiAgentPolicyManager)
|
2022-02-15 17:56:45 +03:00
|
|
|
policy.set_agent_id(env.agents[i])
|
|
|
|
|
Feature/dataclasses (#996)
This PR adds strict typing to the output of `update` and `learn` in all
policies. This will likely be the last large refactoring PR before the
next release (0.6.0, not 1.0.0), so it requires some attention. Several
difficulties were encountered on the path to that goal:
1. The policy hierarchy is actually "broken" in the sense that the keys
of dicts that were output by `learn` did not follow the same enhancement
(inheritance) pattern as the policies. This is a real problem and should
be addressed in the near future. Generally, several aspects of the
policy design and hierarchy might deserve a dedicated discussion.
2. Each policy needs to be generic in the stats return type, because one
might want to extend it at some point and then also extend the stats.
Even within the source code base this pattern is necessary in many
places.
3. The interaction between learn and update is a bit quirky, we
currently handle it by having update modify special field inside
TrainingStats, whereas all other fields are handled by learn.
4. The IQM module is a policy wrapper and required a
TrainingStatsWrapper. The latter relies on a bunch of black magic.
They were addressed by:
1. Live with the broken hierarchy, which is now made visible by bounds
in generics. We use type: ignore where appropriate.
2. Make all policies generic with bounds following the policy
inheritance hierarchy (which is incorrect, see above). We experimented a
bit with nested TrainingStats classes, but that seemed to add more
complexity and be harder to understand. Unfortunately, mypy thinks that
the code below is wrong, wherefore we have to add `type: ignore` to the
return of each `learn`
```python
T = TypeVar("T", bound=int)
def f() -> T:
return 3
```
3. See above
4. Write representative tests for the `TrainingStatsWrapper`. Still, the
black magic might cause nasty surprises down the line (I am not proud of
it)...
Closes #933
---------
Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
|
|
|
self.policies: dict[str | int, BasePolicy] = dict(zip(env.agents, policies, strict=True))
|
|
|
|
"""Maps agent_id to policy."""
|
2020-07-21 14:59:49 +08:00
|
|
|
|
Feature/dataclasses (#996)
This PR adds strict typing to the output of `update` and `learn` in all
policies. This will likely be the last large refactoring PR before the
next release (0.6.0, not 1.0.0), so it requires some attention. Several
difficulties were encountered on the path to that goal:
1. The policy hierarchy is actually "broken" in the sense that the keys
of dicts that were output by `learn` did not follow the same enhancement
(inheritance) pattern as the policies. This is a real problem and should
be addressed in the near future. Generally, several aspects of the
policy design and hierarchy might deserve a dedicated discussion.
2. Each policy needs to be generic in the stats return type, because one
might want to extend it at some point and then also extend the stats.
Even within the source code base this pattern is necessary in many
places.
3. The interaction between learn and update is a bit quirky, we
currently handle it by having update modify special field inside
TrainingStats, whereas all other fields are handled by learn.
4. The IQM module is a policy wrapper and required a
TrainingStatsWrapper. The latter relies on a bunch of black magic.
They were addressed by:
1. Live with the broken hierarchy, which is now made visible by bounds
in generics. We use type: ignore where appropriate.
2. Make all policies generic with bounds following the policy
inheritance hierarchy (which is incorrect, see above). We experimented a
bit with nested TrainingStats classes, but that seemed to add more
complexity and be harder to understand. Unfortunately, mypy thinks that
the code below is wrong, wherefore we have to add `type: ignore` to the
return of each `learn`
```python
T = TypeVar("T", bound=int)
def f() -> T:
return 3
```
3. See above
4. Write representative tests for the `TrainingStatsWrapper`. Still, the
black magic might cause nasty surprises down the line (I am not proud of
it)...
Closes #933
---------
Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
|
|
|
# TODO: unused - remove it?
|
2020-09-12 15:39:01 +08:00
|
|
|
def replace_policy(self, policy: BasePolicy, agent_id: int) -> None:
|
2020-07-21 14:59:49 +08:00
|
|
|
"""Replace the "agent_id"th policy in this manager."""
|
|
|
|
policy.set_agent_id(agent_id)
|
2022-02-15 17:56:45 +03:00
|
|
|
self.policies[agent_id] = policy
|
2020-07-21 14:59:49 +08:00
|
|
|
|
Improved typing and reduced duplication (#912)
# Goals of the PR
The PR introduces **no changes to functionality**, apart from improved
input validation here and there. The main goals are to reduce some
complexity of the code, to improve types and IDE completions, and to
extend documentation and block comments where appropriate. Because of
the change to the trainer interfaces, many files are affected (more
details below), but still the overall changes are "small" in a certain
sense.
## Major Change 1 - BatchProtocol
**TL;DR:** One can now annotate which fields the batch is expected to
have on input params and which fields a returned batch has. Should be
useful for reading the code. getting meaningful IDE support, and
catching bugs with mypy. This annotation strategy will continue to work
if Batch is replaced by TensorDict or by something else.
**In more detail:** Batch itself has no fields and using it for
annotations is of limited informational power. Batches with fields are
not separate classes but instead instances of Batch directly, so there
is no type that could be used for annotation. Fortunately, python
`Protocol` is here for the rescue. With these changes we can now do
things like
```python
class ActionBatchProtocol(BatchProtocol):
logits: Sequence[Union[tuple, torch.Tensor]]
dist: torch.distributions.Distribution
act: torch.Tensor
state: Optional[torch.Tensor]
class RolloutBatchProtocol(BatchProtocol):
obs: torch.Tensor
obs_next: torch.Tensor
info: Dict[str, Any]
rew: torch.Tensor
terminated: torch.Tensor
truncated: torch.Tensor
class PGPolicy(BasePolicy):
...
def forward(
self,
batch: RolloutBatchProtocol,
state: Optional[Union[dict, Batch, np.ndarray]] = None,
**kwargs: Any,
) -> ActionBatchProtocol:
```
The IDE and mypy are now very helpful in finding errors and in
auto-completion, whereas before the tools couldn't assist in that at
all.
## Major Change 2 - remove duplication in trainer package
**TL;DR:** There was a lot of duplication between `BaseTrainer` and its
subclasses. Even worse, it was almost-duplication. There was also
interface fragmentation through things like `onpolicy_trainer`. Now this
duplication is gone and all downstream code was adjusted.
**In more detail:** Since this change affects a lot of code, I would
like to explain why I thought it to be necessary.
1. The subclasses of `BaseTrainer` just duplicated docstrings and
constructors. What's worse, they changed the order of args there, even
turning some kwargs of BaseTrainer into args. They also had the arg
`learning_type` which was passed as kwarg to the base class and was
unused there. This made things difficult to maintain, and in fact some
errors were already present in the duplicated docstrings.
2. The "functions" a la `onpolicy_trainer`, which just called the
`OnpolicyTrainer.run`, not only introduced interface fragmentation but
also completely obfuscated the docstring and interfaces. They themselves
had no dosctring and the interface was just `*args, **kwargs`, which
makes it impossible to understand what they do and which things can be
passed without reading their implementation, then reading the docstring
of the associated class, etc. Needless to say, mypy and IDEs provide no
support with such functions. Nevertheless, they were used everywhere in
the code-base. I didn't find the sacrifices in clarity and complexity
justified just for the sake of not having to write `.run()` after
instantiating a trainer.
3. The trainers are all very similar to each other. As for my
application I needed a new trainer, I wanted to understand their
structure. The similarity, however, was hard to discover since they were
all in separate modules and there was so much duplication. I kept
staring at the constructors for a while until I figured out that
essentially no changes to the superclass were introduced. Now they are
all in the same module and the similarities/differences between them are
much easier to grasp (in my opinion)
4. Because of (1), I had to manually change and check a lot of code,
which was very tedious and boring. This kind of work won't be necessary
in the future, since now IDEs can be used for changing signatures,
renaming args and kwargs, changing class names and so on.
I have some more reasons, but maybe the above ones are convincing
enough.
## Minor changes: improved input validation and types
I added input validation for things like `state` and `action_scaling`
(which only makes sense for continuous envs). After adding this, some
tests failed to pass this validation. There I added
`action_scaling=isinstance(env.action_space, Box)`, after which tests
were green. I don't know why the tests were green before, since action
scaling doesn't make sense for discrete actions. I guess some aspect was
not tested and didn't crash.
I also added Literal in some places, in particular for
`action_bound_method`. Now it is no longer allowed to pass an empty
string, instead one should pass `None`. Also here there is input
validation with clear error messages.
@Trinkle23897 The functional tests are green. I didn't want to fix the
formatting, since it will change in the next PR that will solve #914
anyway. I also found a whole bunch of code in `docs/_static`, which I
just deleted (shouldn't it be copied from the sources during docs build
instead of committed?). I also haven't adjusted the documentation yet,
which atm still mentions the trainers of the type
`onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()`
## Breaking Changes
The adjustments to the trainer package introduce breaking changes as
duplicated interfaces are deleted. However, it should be very easy for
users to adjust to them
---------
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
|
|
|
# TODO: violates Liskov substitution principle
|
|
|
|
def process_fn( # type: ignore
|
2023-08-25 23:40:56 +02:00
|
|
|
self,
|
Feature/dataclasses (#996)
This PR adds strict typing to the output of `update` and `learn` in all
policies. This will likely be the last large refactoring PR before the
next release (0.6.0, not 1.0.0), so it requires some attention. Several
difficulties were encountered on the path to that goal:
1. The policy hierarchy is actually "broken" in the sense that the keys
of dicts that were output by `learn` did not follow the same enhancement
(inheritance) pattern as the policies. This is a real problem and should
be addressed in the near future. Generally, several aspects of the
policy design and hierarchy might deserve a dedicated discussion.
2. Each policy needs to be generic in the stats return type, because one
might want to extend it at some point and then also extend the stats.
Even within the source code base this pattern is necessary in many
places.
3. The interaction between learn and update is a bit quirky, we
currently handle it by having update modify special field inside
TrainingStats, whereas all other fields are handled by learn.
4. The IQM module is a policy wrapper and required a
TrainingStatsWrapper. The latter relies on a bunch of black magic.
They were addressed by:
1. Live with the broken hierarchy, which is now made visible by bounds
in generics. We use type: ignore where appropriate.
2. Make all policies generic with bounds following the policy
inheritance hierarchy (which is incorrect, see above). We experimented a
bit with nested TrainingStats classes, but that seemed to add more
complexity and be harder to understand. Unfortunately, mypy thinks that
the code below is wrong, wherefore we have to add `type: ignore` to the
return of each `learn`
```python
T = TypeVar("T", bound=int)
def f() -> T:
return 3
```
3. See above
4. Write representative tests for the `TrainingStatsWrapper`. Still, the
black magic might cause nasty surprises down the line (I am not proud of
it)...
Closes #933
---------
Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
|
|
|
batch: MAPRolloutBatchProtocol,
|
2023-08-25 23:40:56 +02:00
|
|
|
buffer: ReplayBuffer,
|
|
|
|
indice: np.ndarray,
|
Feature/dataclasses (#996)
This PR adds strict typing to the output of `update` and `learn` in all
policies. This will likely be the last large refactoring PR before the
next release (0.6.0, not 1.0.0), so it requires some attention. Several
difficulties were encountered on the path to that goal:
1. The policy hierarchy is actually "broken" in the sense that the keys
of dicts that were output by `learn` did not follow the same enhancement
(inheritance) pattern as the policies. This is a real problem and should
be addressed in the near future. Generally, several aspects of the
policy design and hierarchy might deserve a dedicated discussion.
2. Each policy needs to be generic in the stats return type, because one
might want to extend it at some point and then also extend the stats.
Even within the source code base this pattern is necessary in many
places.
3. The interaction between learn and update is a bit quirky, we
currently handle it by having update modify special field inside
TrainingStats, whereas all other fields are handled by learn.
4. The IQM module is a policy wrapper and required a
TrainingStatsWrapper. The latter relies on a bunch of black magic.
They were addressed by:
1. Live with the broken hierarchy, which is now made visible by bounds
in generics. We use type: ignore where appropriate.
2. Make all policies generic with bounds following the policy
inheritance hierarchy (which is incorrect, see above). We experimented a
bit with nested TrainingStats classes, but that seemed to add more
complexity and be harder to understand. Unfortunately, mypy thinks that
the code below is wrong, wherefore we have to add `type: ignore` to the
return of each `learn`
```python
T = TypeVar("T", bound=int)
def f() -> T:
return 3
```
3. See above
4. Write representative tests for the `TrainingStatsWrapper`. Still, the
black magic might cause nasty surprises down the line (I am not proud of
it)...
Closes #933
---------
Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
|
|
|
) -> MAPRolloutBatchProtocol:
|
|
|
|
"""Dispatch batch data from `obs.agent_id` to every policy's process_fn.
|
2020-09-11 07:55:37 +08:00
|
|
|
|
|
|
|
Save original multi-dimensional rew in "save_rew", set rew to the
|
|
|
|
reward of each agent during their "process_fn", and restore the
|
2020-07-21 14:59:49 +08:00
|
|
|
original reward afterwards.
|
|
|
|
"""
|
Feature/dataclasses (#996)
This PR adds strict typing to the output of `update` and `learn` in all
policies. This will likely be the last large refactoring PR before the
next release (0.6.0, not 1.0.0), so it requires some attention. Several
difficulties were encountered on the path to that goal:
1. The policy hierarchy is actually "broken" in the sense that the keys
of dicts that were output by `learn` did not follow the same enhancement
(inheritance) pattern as the policies. This is a real problem and should
be addressed in the near future. Generally, several aspects of the
policy design and hierarchy might deserve a dedicated discussion.
2. Each policy needs to be generic in the stats return type, because one
might want to extend it at some point and then also extend the stats.
Even within the source code base this pattern is necessary in many
places.
3. The interaction between learn and update is a bit quirky, we
currently handle it by having update modify special field inside
TrainingStats, whereas all other fields are handled by learn.
4. The IQM module is a policy wrapper and required a
TrainingStatsWrapper. The latter relies on a bunch of black magic.
They were addressed by:
1. Live with the broken hierarchy, which is now made visible by bounds
in generics. We use type: ignore where appropriate.
2. Make all policies generic with bounds following the policy
inheritance hierarchy (which is incorrect, see above). We experimented a
bit with nested TrainingStats classes, but that seemed to add more
complexity and be harder to understand. Unfortunately, mypy thinks that
the code below is wrong, wherefore we have to add `type: ignore` to the
return of each `learn`
```python
T = TypeVar("T", bound=int)
def f() -> T:
return 3
```
3. See above
4. Write representative tests for the `TrainingStatsWrapper`. Still, the
black magic might cause nasty surprises down the line (I am not proud of
it)...
Closes #933
---------
Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
|
|
|
# TODO: maybe only str is actually allowed as agent_id? See MAPRolloutBatchProtocol
|
|
|
|
results: dict[str | int, RolloutBatchProtocol] = {}
|
2023-08-25 23:40:56 +02:00
|
|
|
assert isinstance(
|
|
|
|
batch.obs,
|
|
|
|
BatchProtocol,
|
|
|
|
), f"here only observations of type Batch are permitted, but got {type(batch.obs)}"
|
2020-07-21 14:59:49 +08:00
|
|
|
# reward can be empty Batch (after initial reset) or nparray.
|
|
|
|
has_rew = isinstance(buffer.rew, np.ndarray)
|
|
|
|
if has_rew: # save the original reward in save_rew
|
2020-09-08 21:10:48 +08:00
|
|
|
# Since we do not override buffer.__setattr__, here we use _meta to
|
|
|
|
# change buffer.rew, otherwise buffer.rew = Batch() has no effect.
|
Improved typing and reduced duplication (#912)
# Goals of the PR
The PR introduces **no changes to functionality**, apart from improved
input validation here and there. The main goals are to reduce some
complexity of the code, to improve types and IDE completions, and to
extend documentation and block comments where appropriate. Because of
the change to the trainer interfaces, many files are affected (more
details below), but still the overall changes are "small" in a certain
sense.
## Major Change 1 - BatchProtocol
**TL;DR:** One can now annotate which fields the batch is expected to
have on input params and which fields a returned batch has. Should be
useful for reading the code. getting meaningful IDE support, and
catching bugs with mypy. This annotation strategy will continue to work
if Batch is replaced by TensorDict or by something else.
**In more detail:** Batch itself has no fields and using it for
annotations is of limited informational power. Batches with fields are
not separate classes but instead instances of Batch directly, so there
is no type that could be used for annotation. Fortunately, python
`Protocol` is here for the rescue. With these changes we can now do
things like
```python
class ActionBatchProtocol(BatchProtocol):
logits: Sequence[Union[tuple, torch.Tensor]]
dist: torch.distributions.Distribution
act: torch.Tensor
state: Optional[torch.Tensor]
class RolloutBatchProtocol(BatchProtocol):
obs: torch.Tensor
obs_next: torch.Tensor
info: Dict[str, Any]
rew: torch.Tensor
terminated: torch.Tensor
truncated: torch.Tensor
class PGPolicy(BasePolicy):
...
def forward(
self,
batch: RolloutBatchProtocol,
state: Optional[Union[dict, Batch, np.ndarray]] = None,
**kwargs: Any,
) -> ActionBatchProtocol:
```
The IDE and mypy are now very helpful in finding errors and in
auto-completion, whereas before the tools couldn't assist in that at
all.
## Major Change 2 - remove duplication in trainer package
**TL;DR:** There was a lot of duplication between `BaseTrainer` and its
subclasses. Even worse, it was almost-duplication. There was also
interface fragmentation through things like `onpolicy_trainer`. Now this
duplication is gone and all downstream code was adjusted.
**In more detail:** Since this change affects a lot of code, I would
like to explain why I thought it to be necessary.
1. The subclasses of `BaseTrainer` just duplicated docstrings and
constructors. What's worse, they changed the order of args there, even
turning some kwargs of BaseTrainer into args. They also had the arg
`learning_type` which was passed as kwarg to the base class and was
unused there. This made things difficult to maintain, and in fact some
errors were already present in the duplicated docstrings.
2. The "functions" a la `onpolicy_trainer`, which just called the
`OnpolicyTrainer.run`, not only introduced interface fragmentation but
also completely obfuscated the docstring and interfaces. They themselves
had no dosctring and the interface was just `*args, **kwargs`, which
makes it impossible to understand what they do and which things can be
passed without reading their implementation, then reading the docstring
of the associated class, etc. Needless to say, mypy and IDEs provide no
support with such functions. Nevertheless, they were used everywhere in
the code-base. I didn't find the sacrifices in clarity and complexity
justified just for the sake of not having to write `.run()` after
instantiating a trainer.
3. The trainers are all very similar to each other. As for my
application I needed a new trainer, I wanted to understand their
structure. The similarity, however, was hard to discover since they were
all in separate modules and there was so much duplication. I kept
staring at the constructors for a while until I figured out that
essentially no changes to the superclass were introduced. Now they are
all in the same module and the similarities/differences between them are
much easier to grasp (in my opinion)
4. Because of (1), I had to manually change and check a lot of code,
which was very tedious and boring. This kind of work won't be necessary
in the future, since now IDEs can be used for changing signatures,
renaming args and kwargs, changing class names and so on.
I have some more reasons, but maybe the above ones are convincing
enough.
## Minor changes: improved input validation and types
I added input validation for things like `state` and `action_scaling`
(which only makes sense for continuous envs). After adding this, some
tests failed to pass this validation. There I added
`action_scaling=isinstance(env.action_space, Box)`, after which tests
were green. I don't know why the tests were green before, since action
scaling doesn't make sense for discrete actions. I guess some aspect was
not tested and didn't crash.
I also added Literal in some places, in particular for
`action_bound_method`. Now it is no longer allowed to pass an empty
string, instead one should pass `None`. Also here there is input
validation with clear error messages.
@Trinkle23897 The functional tests are green. I didn't want to fix the
formatting, since it will change in the next PR that will solve #914
anyway. I also found a whole bunch of code in `docs/_static`, which I
just deleted (shouldn't it be copied from the sources during docs build
instead of committed?). I also haven't adjusted the documentation yet,
which atm still mentions the trainers of the type
`onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()`
## Breaking Changes
The adjustments to the trainer package introduce breaking changes as
duplicated interfaces are deleted. However, it should be very easy for
users to adjust to them
---------
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
|
|
|
save_rew, buffer._meta.rew = buffer.rew, Batch() # type: ignore
|
2022-02-15 17:56:45 +03:00
|
|
|
for agent, policy in self.policies.items():
|
|
|
|
agent_index = np.nonzero(batch.obs.agent_id == agent)[0]
|
2020-07-21 14:59:49 +08:00
|
|
|
if len(agent_index) == 0:
|
Feature/dataclasses (#996)
This PR adds strict typing to the output of `update` and `learn` in all
policies. This will likely be the last large refactoring PR before the
next release (0.6.0, not 1.0.0), so it requires some attention. Several
difficulties were encountered on the path to that goal:
1. The policy hierarchy is actually "broken" in the sense that the keys
of dicts that were output by `learn` did not follow the same enhancement
(inheritance) pattern as the policies. This is a real problem and should
be addressed in the near future. Generally, several aspects of the
policy design and hierarchy might deserve a dedicated discussion.
2. Each policy needs to be generic in the stats return type, because one
might want to extend it at some point and then also extend the stats.
Even within the source code base this pattern is necessary in many
places.
3. The interaction between learn and update is a bit quirky, we
currently handle it by having update modify special field inside
TrainingStats, whereas all other fields are handled by learn.
4. The IQM module is a policy wrapper and required a
TrainingStatsWrapper. The latter relies on a bunch of black magic.
They were addressed by:
1. Live with the broken hierarchy, which is now made visible by bounds
in generics. We use type: ignore where appropriate.
2. Make all policies generic with bounds following the policy
inheritance hierarchy (which is incorrect, see above). We experimented a
bit with nested TrainingStats classes, but that seemed to add more
complexity and be harder to understand. Unfortunately, mypy thinks that
the code below is wrong, wherefore we have to add `type: ignore` to the
return of each `learn`
```python
T = TypeVar("T", bound=int)
def f() -> T:
return 3
```
3. See above
4. Write representative tests for the `TrainingStatsWrapper`. Still, the
black magic might cause nasty surprises down the line (I am not proud of
it)...
Closes #933
---------
Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
|
|
|
results[agent] = cast(RolloutBatchProtocol, Batch())
|
2020-07-21 14:59:49 +08:00
|
|
|
continue
|
2022-02-15 17:56:45 +03:00
|
|
|
tmp_batch, tmp_indice = batch[agent_index], indice[agent_index]
|
2020-07-21 14:59:49 +08:00
|
|
|
if has_rew:
|
2022-02-15 17:56:45 +03:00
|
|
|
tmp_batch.rew = tmp_batch.rew[:, self.agent_idx[agent]]
|
|
|
|
buffer._meta.rew = save_rew[:, self.agent_idx[agent]]
|
|
|
|
if not hasattr(tmp_batch.obs, "mask"):
|
2023-08-25 23:40:56 +02:00
|
|
|
if hasattr(tmp_batch.obs, "obs"):
|
2022-02-15 17:56:45 +03:00
|
|
|
tmp_batch.obs = tmp_batch.obs.obs
|
2023-08-25 23:40:56 +02:00
|
|
|
if hasattr(tmp_batch.obs_next, "obs"):
|
2022-02-15 17:56:45 +03:00
|
|
|
tmp_batch.obs_next = tmp_batch.obs_next.obs
|
|
|
|
results[agent] = policy.process_fn(tmp_batch, buffer, tmp_indice)
|
2020-07-21 14:59:49 +08:00
|
|
|
if has_rew: # restore from save_rew
|
2020-09-08 21:10:48 +08:00
|
|
|
buffer._meta.rew = save_rew
|
2020-07-21 14:59:49 +08:00
|
|
|
return Batch(results)
|
|
|
|
|
Improved typing and reduced duplication (#912)
# Goals of the PR
The PR introduces **no changes to functionality**, apart from improved
input validation here and there. The main goals are to reduce some
complexity of the code, to improve types and IDE completions, and to
extend documentation and block comments where appropriate. Because of
the change to the trainer interfaces, many files are affected (more
details below), but still the overall changes are "small" in a certain
sense.
## Major Change 1 - BatchProtocol
**TL;DR:** One can now annotate which fields the batch is expected to
have on input params and which fields a returned batch has. Should be
useful for reading the code. getting meaningful IDE support, and
catching bugs with mypy. This annotation strategy will continue to work
if Batch is replaced by TensorDict or by something else.
**In more detail:** Batch itself has no fields and using it for
annotations is of limited informational power. Batches with fields are
not separate classes but instead instances of Batch directly, so there
is no type that could be used for annotation. Fortunately, python
`Protocol` is here for the rescue. With these changes we can now do
things like
```python
class ActionBatchProtocol(BatchProtocol):
logits: Sequence[Union[tuple, torch.Tensor]]
dist: torch.distributions.Distribution
act: torch.Tensor
state: Optional[torch.Tensor]
class RolloutBatchProtocol(BatchProtocol):
obs: torch.Tensor
obs_next: torch.Tensor
info: Dict[str, Any]
rew: torch.Tensor
terminated: torch.Tensor
truncated: torch.Tensor
class PGPolicy(BasePolicy):
...
def forward(
self,
batch: RolloutBatchProtocol,
state: Optional[Union[dict, Batch, np.ndarray]] = None,
**kwargs: Any,
) -> ActionBatchProtocol:
```
The IDE and mypy are now very helpful in finding errors and in
auto-completion, whereas before the tools couldn't assist in that at
all.
## Major Change 2 - remove duplication in trainer package
**TL;DR:** There was a lot of duplication between `BaseTrainer` and its
subclasses. Even worse, it was almost-duplication. There was also
interface fragmentation through things like `onpolicy_trainer`. Now this
duplication is gone and all downstream code was adjusted.
**In more detail:** Since this change affects a lot of code, I would
like to explain why I thought it to be necessary.
1. The subclasses of `BaseTrainer` just duplicated docstrings and
constructors. What's worse, they changed the order of args there, even
turning some kwargs of BaseTrainer into args. They also had the arg
`learning_type` which was passed as kwarg to the base class and was
unused there. This made things difficult to maintain, and in fact some
errors were already present in the duplicated docstrings.
2. The "functions" a la `onpolicy_trainer`, which just called the
`OnpolicyTrainer.run`, not only introduced interface fragmentation but
also completely obfuscated the docstring and interfaces. They themselves
had no dosctring and the interface was just `*args, **kwargs`, which
makes it impossible to understand what they do and which things can be
passed without reading their implementation, then reading the docstring
of the associated class, etc. Needless to say, mypy and IDEs provide no
support with such functions. Nevertheless, they were used everywhere in
the code-base. I didn't find the sacrifices in clarity and complexity
justified just for the sake of not having to write `.run()` after
instantiating a trainer.
3. The trainers are all very similar to each other. As for my
application I needed a new trainer, I wanted to understand their
structure. The similarity, however, was hard to discover since they were
all in separate modules and there was so much duplication. I kept
staring at the constructors for a while until I figured out that
essentially no changes to the superclass were introduced. Now they are
all in the same module and the similarities/differences between them are
much easier to grasp (in my opinion)
4. Because of (1), I had to manually change and check a lot of code,
which was very tedious and boring. This kind of work won't be necessary
in the future, since now IDEs can be used for changing signatures,
renaming args and kwargs, changing class names and so on.
I have some more reasons, but maybe the above ones are convincing
enough.
## Minor changes: improved input validation and types
I added input validation for things like `state` and `action_scaling`
(which only makes sense for continuous envs). After adding this, some
tests failed to pass this validation. There I added
`action_scaling=isinstance(env.action_space, Box)`, after which tests
were green. I don't know why the tests were green before, since action
scaling doesn't make sense for discrete actions. I guess some aspect was
not tested and didn't crash.
I also added Literal in some places, in particular for
`action_bound_method`. Now it is no longer allowed to pass an empty
string, instead one should pass `None`. Also here there is input
validation with clear error messages.
@Trinkle23897 The functional tests are green. I didn't want to fix the
formatting, since it will change in the next PR that will solve #914
anyway. I also found a whole bunch of code in `docs/_static`, which I
just deleted (shouldn't it be copied from the sources during docs build
instead of committed?). I also haven't adjusted the documentation yet,
which atm still mentions the trainers of the type
`onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()`
## Breaking Changes
The adjustments to the trainer package introduce breaking changes as
duplicated interfaces are deleted. However, it should be very easy for
users to adjust to them
---------
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
|
|
|
def exploration_noise(
|
2023-08-25 23:40:56 +02:00
|
|
|
self,
|
2023-09-05 23:34:23 +02:00
|
|
|
act: np.ndarray | BatchProtocol,
|
2023-08-25 23:40:56 +02:00
|
|
|
batch: RolloutBatchProtocol,
|
2023-09-05 23:34:23 +02:00
|
|
|
) -> np.ndarray | BatchProtocol:
|
2021-02-19 10:33:49 +08:00
|
|
|
"""Add exploration noise from sub-policy onto act."""
|
2023-08-25 23:40:56 +02:00
|
|
|
assert isinstance(
|
|
|
|
batch.obs,
|
|
|
|
BatchProtocol,
|
|
|
|
), f"here only observations of type Batch are permitted, but got {type(batch.obs)}"
|
2022-02-15 17:56:45 +03:00
|
|
|
for agent_id, policy in self.policies.items():
|
|
|
|
agent_index = np.nonzero(batch.obs.agent_id == agent_id)[0]
|
2021-02-19 10:33:49 +08:00
|
|
|
if len(agent_index) == 0:
|
|
|
|
continue
|
2023-08-25 23:40:56 +02:00
|
|
|
act[agent_index] = policy.exploration_noise(act[agent_index], batch[agent_index])
|
2021-02-19 10:33:49 +08:00
|
|
|
return act
|
|
|
|
|
2021-03-30 16:06:03 +08:00
|
|
|
def forward( # type: ignore
|
2020-09-12 15:39:01 +08:00
|
|
|
self,
|
|
|
|
batch: Batch,
|
2023-09-05 23:34:23 +02:00
|
|
|
state: dict | Batch | None = None,
|
2020-09-12 15:39:01 +08:00
|
|
|
**kwargs: Any,
|
|
|
|
) -> Batch:
|
2020-09-11 07:55:37 +08:00
|
|
|
"""Dispatch batch data from obs.agent_id to every policy's forward.
|
|
|
|
|
Feature/dataclasses (#996)
This PR adds strict typing to the output of `update` and `learn` in all
policies. This will likely be the last large refactoring PR before the
next release (0.6.0, not 1.0.0), so it requires some attention. Several
difficulties were encountered on the path to that goal:
1. The policy hierarchy is actually "broken" in the sense that the keys
of dicts that were output by `learn` did not follow the same enhancement
(inheritance) pattern as the policies. This is a real problem and should
be addressed in the near future. Generally, several aspects of the
policy design and hierarchy might deserve a dedicated discussion.
2. Each policy needs to be generic in the stats return type, because one
might want to extend it at some point and then also extend the stats.
Even within the source code base this pattern is necessary in many
places.
3. The interaction between learn and update is a bit quirky, we
currently handle it by having update modify special field inside
TrainingStats, whereas all other fields are handled by learn.
4. The IQM module is a policy wrapper and required a
TrainingStatsWrapper. The latter relies on a bunch of black magic.
They were addressed by:
1. Live with the broken hierarchy, which is now made visible by bounds
in generics. We use type: ignore where appropriate.
2. Make all policies generic with bounds following the policy
inheritance hierarchy (which is incorrect, see above). We experimented a
bit with nested TrainingStats classes, but that seemed to add more
complexity and be harder to understand. Unfortunately, mypy thinks that
the code below is wrong, wherefore we have to add `type: ignore` to the
return of each `learn`
```python
T = TypeVar("T", bound=int)
def f() -> T:
return 3
```
3. See above
4. Write representative tests for the `TrainingStatsWrapper`. Still, the
black magic might cause nasty surprises down the line (I am not proud of
it)...
Closes #933
---------
Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
|
|
|
:param batch: TODO: document what is expected at input and make a BatchProtocol for it
|
2020-09-11 07:55:37 +08:00
|
|
|
:param state: if None, it means all agents have no state. If not
|
2020-07-21 14:59:49 +08:00
|
|
|
None, it should contain keys of "agent_1", "agent_2", ...
|
|
|
|
|
|
|
|
:return: a Batch with the following contents:
|
Feature/dataclasses (#996)
This PR adds strict typing to the output of `update` and `learn` in all
policies. This will likely be the last large refactoring PR before the
next release (0.6.0, not 1.0.0), so it requires some attention. Several
difficulties were encountered on the path to that goal:
1. The policy hierarchy is actually "broken" in the sense that the keys
of dicts that were output by `learn` did not follow the same enhancement
(inheritance) pattern as the policies. This is a real problem and should
be addressed in the near future. Generally, several aspects of the
policy design and hierarchy might deserve a dedicated discussion.
2. Each policy needs to be generic in the stats return type, because one
might want to extend it at some point and then also extend the stats.
Even within the source code base this pattern is necessary in many
places.
3. The interaction between learn and update is a bit quirky, we
currently handle it by having update modify special field inside
TrainingStats, whereas all other fields are handled by learn.
4. The IQM module is a policy wrapper and required a
TrainingStatsWrapper. The latter relies on a bunch of black magic.
They were addressed by:
1. Live with the broken hierarchy, which is now made visible by bounds
in generics. We use type: ignore where appropriate.
2. Make all policies generic with bounds following the policy
inheritance hierarchy (which is incorrect, see above). We experimented a
bit with nested TrainingStats classes, but that seemed to add more
complexity and be harder to understand. Unfortunately, mypy thinks that
the code below is wrong, wherefore we have to add `type: ignore` to the
return of each `learn`
```python
T = TypeVar("T", bound=int)
def f() -> T:
return 3
```
3. See above
4. Write representative tests for the `TrainingStatsWrapper`. Still, the
black magic might cause nasty surprises down the line (I am not proud of
it)...
Closes #933
---------
Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
|
|
|
TODO: establish a BatcProtocol for this
|
2020-07-21 14:59:49 +08:00
|
|
|
|
|
|
|
::
|
|
|
|
|
|
|
|
{
|
|
|
|
"act": actions corresponding to the input
|
2020-08-27 12:15:18 +08:00
|
|
|
"state": {
|
2020-07-21 14:59:49 +08:00
|
|
|
"agent_1": output state of agent_1's policy for the state
|
|
|
|
"agent_2": xxx
|
|
|
|
...
|
|
|
|
"agent_n": xxx}
|
2020-08-27 12:15:18 +08:00
|
|
|
"out": {
|
2020-07-21 14:59:49 +08:00
|
|
|
"agent_1": output of agent_1's policy for the input
|
|
|
|
"agent_2": xxx
|
|
|
|
...
|
|
|
|
"agent_n": xxx}
|
|
|
|
}
|
|
|
|
"""
|
2023-09-05 23:34:23 +02:00
|
|
|
results: list[tuple[bool, np.ndarray, Batch, np.ndarray | Batch, Batch]] = []
|
2022-02-15 17:56:45 +03:00
|
|
|
for agent_id, policy in self.policies.items():
|
2020-07-21 14:59:49 +08:00
|
|
|
# This part of code is difficult to understand.
|
|
|
|
# Let's follow an example with two agents
|
|
|
|
# batch.obs.agent_id is [1, 2, 1, 2, 1, 2] (with batch_size == 6)
|
|
|
|
# each agent plays for three transitions
|
|
|
|
# agent_index for agent 1 is [0, 2, 4]
|
|
|
|
# agent_index for agent 2 is [1, 3, 5]
|
|
|
|
# we separate the transition of each agent according to agent_id
|
2022-02-15 17:56:45 +03:00
|
|
|
agent_index = np.nonzero(batch.obs.agent_id == agent_id)[0]
|
2020-07-21 14:59:49 +08:00
|
|
|
if len(agent_index) == 0:
|
|
|
|
# (has_data, agent_index, out, act, state)
|
2021-03-30 16:06:03 +08:00
|
|
|
results.append((False, np.array([-1]), Batch(), Batch(), Batch()))
|
2020-07-21 14:59:49 +08:00
|
|
|
continue
|
|
|
|
tmp_batch = batch[agent_index]
|
|
|
|
if isinstance(tmp_batch.rew, np.ndarray):
|
|
|
|
# reward can be empty Batch (after initial reset) or nparray.
|
2022-02-15 17:56:45 +03:00
|
|
|
tmp_batch.rew = tmp_batch.rew[:, self.agent_idx[agent_id]]
|
|
|
|
if not hasattr(tmp_batch.obs, "mask"):
|
2023-08-25 23:40:56 +02:00
|
|
|
if hasattr(tmp_batch.obs, "obs"):
|
2022-02-15 17:56:45 +03:00
|
|
|
tmp_batch.obs = tmp_batch.obs.obs
|
2023-08-25 23:40:56 +02:00
|
|
|
if hasattr(tmp_batch.obs_next, "obs"):
|
2022-02-15 17:56:45 +03:00
|
|
|
tmp_batch.obs_next = tmp_batch.obs_next.obs
|
2021-09-03 05:05:04 +08:00
|
|
|
out = policy(
|
|
|
|
batch=tmp_batch,
|
2022-02-15 17:56:45 +03:00
|
|
|
state=None if state is None else state[agent_id],
|
2023-08-25 23:40:56 +02:00
|
|
|
**kwargs,
|
2021-09-03 05:05:04 +08:00
|
|
|
)
|
2020-07-21 14:59:49 +08:00
|
|
|
act = out.act
|
2023-08-25 23:40:56 +02:00
|
|
|
each_state = out.state if (hasattr(out, "state") and out.state is not None) else Batch()
|
2020-07-21 14:59:49 +08:00
|
|
|
results.append((True, agent_index, out, act, each_state))
|
Improved typing and reduced duplication (#912)
# Goals of the PR
The PR introduces **no changes to functionality**, apart from improved
input validation here and there. The main goals are to reduce some
complexity of the code, to improve types and IDE completions, and to
extend documentation and block comments where appropriate. Because of
the change to the trainer interfaces, many files are affected (more
details below), but still the overall changes are "small" in a certain
sense.
## Major Change 1 - BatchProtocol
**TL;DR:** One can now annotate which fields the batch is expected to
have on input params and which fields a returned batch has. Should be
useful for reading the code. getting meaningful IDE support, and
catching bugs with mypy. This annotation strategy will continue to work
if Batch is replaced by TensorDict or by something else.
**In more detail:** Batch itself has no fields and using it for
annotations is of limited informational power. Batches with fields are
not separate classes but instead instances of Batch directly, so there
is no type that could be used for annotation. Fortunately, python
`Protocol` is here for the rescue. With these changes we can now do
things like
```python
class ActionBatchProtocol(BatchProtocol):
logits: Sequence[Union[tuple, torch.Tensor]]
dist: torch.distributions.Distribution
act: torch.Tensor
state: Optional[torch.Tensor]
class RolloutBatchProtocol(BatchProtocol):
obs: torch.Tensor
obs_next: torch.Tensor
info: Dict[str, Any]
rew: torch.Tensor
terminated: torch.Tensor
truncated: torch.Tensor
class PGPolicy(BasePolicy):
...
def forward(
self,
batch: RolloutBatchProtocol,
state: Optional[Union[dict, Batch, np.ndarray]] = None,
**kwargs: Any,
) -> ActionBatchProtocol:
```
The IDE and mypy are now very helpful in finding errors and in
auto-completion, whereas before the tools couldn't assist in that at
all.
## Major Change 2 - remove duplication in trainer package
**TL;DR:** There was a lot of duplication between `BaseTrainer` and its
subclasses. Even worse, it was almost-duplication. There was also
interface fragmentation through things like `onpolicy_trainer`. Now this
duplication is gone and all downstream code was adjusted.
**In more detail:** Since this change affects a lot of code, I would
like to explain why I thought it to be necessary.
1. The subclasses of `BaseTrainer` just duplicated docstrings and
constructors. What's worse, they changed the order of args there, even
turning some kwargs of BaseTrainer into args. They also had the arg
`learning_type` which was passed as kwarg to the base class and was
unused there. This made things difficult to maintain, and in fact some
errors were already present in the duplicated docstrings.
2. The "functions" a la `onpolicy_trainer`, which just called the
`OnpolicyTrainer.run`, not only introduced interface fragmentation but
also completely obfuscated the docstring and interfaces. They themselves
had no dosctring and the interface was just `*args, **kwargs`, which
makes it impossible to understand what they do and which things can be
passed without reading their implementation, then reading the docstring
of the associated class, etc. Needless to say, mypy and IDEs provide no
support with such functions. Nevertheless, they were used everywhere in
the code-base. I didn't find the sacrifices in clarity and complexity
justified just for the sake of not having to write `.run()` after
instantiating a trainer.
3. The trainers are all very similar to each other. As for my
application I needed a new trainer, I wanted to understand their
structure. The similarity, however, was hard to discover since they were
all in separate modules and there was so much duplication. I kept
staring at the constructors for a while until I figured out that
essentially no changes to the superclass were introduced. Now they are
all in the same module and the similarities/differences between them are
much easier to grasp (in my opinion)
4. Because of (1), I had to manually change and check a lot of code,
which was very tedious and boring. This kind of work won't be necessary
in the future, since now IDEs can be used for changing signatures,
renaming args and kwargs, changing class names and so on.
I have some more reasons, but maybe the above ones are convincing
enough.
## Minor changes: improved input validation and types
I added input validation for things like `state` and `action_scaling`
(which only makes sense for continuous envs). After adding this, some
tests failed to pass this validation. There I added
`action_scaling=isinstance(env.action_space, Box)`, after which tests
were green. I don't know why the tests were green before, since action
scaling doesn't make sense for discrete actions. I guess some aspect was
not tested and didn't crash.
I also added Literal in some places, in particular for
`action_bound_method`. Now it is no longer allowed to pass an empty
string, instead one should pass `None`. Also here there is input
validation with clear error messages.
@Trinkle23897 The functional tests are green. I didn't want to fix the
formatting, since it will change in the next PR that will solve #914
anyway. I also found a whole bunch of code in `docs/_static`, which I
just deleted (shouldn't it be copied from the sources during docs build
instead of committed?). I also haven't adjusted the documentation yet,
which atm still mentions the trainers of the type
`onpolicy_trainer(...)` instead of `OnpolicyTrainer(...).run()`
## Breaking Changes
The adjustments to the trainer package introduce breaking changes as
duplicated interfaces are deleted. However, it should be very easy for
users to adjust to them
---------
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-08-22 18:54:46 +02:00
|
|
|
holder: Batch = Batch.cat(
|
2023-08-25 23:40:56 +02:00
|
|
|
[{"act": act} for (has_data, agent_index, out, act, each_state) in results if has_data],
|
2021-09-03 05:05:04 +08:00
|
|
|
)
|
2020-07-21 14:59:49 +08:00
|
|
|
state_dict, out_dict = {}, {}
|
2023-08-25 23:40:56 +02:00
|
|
|
for (agent_id, _), (has_data, agent_index, out, act, state) in zip(
|
|
|
|
self.policies.items(),
|
|
|
|
results,
|
2023-09-05 23:34:23 +02:00
|
|
|
strict=True,
|
2023-08-25 23:40:56 +02:00
|
|
|
):
|
2020-07-21 14:59:49 +08:00
|
|
|
if has_data:
|
|
|
|
holder.act[agent_index] = act
|
2022-02-15 17:56:45 +03:00
|
|
|
state_dict[agent_id] = state
|
|
|
|
out_dict[agent_id] = out
|
2020-07-21 14:59:49 +08:00
|
|
|
holder["out"] = out_dict
|
|
|
|
holder["state"] = state_dict
|
|
|
|
return holder
|
|
|
|
|
Feature/dataclasses (#996)
This PR adds strict typing to the output of `update` and `learn` in all
policies. This will likely be the last large refactoring PR before the
next release (0.6.0, not 1.0.0), so it requires some attention. Several
difficulties were encountered on the path to that goal:
1. The policy hierarchy is actually "broken" in the sense that the keys
of dicts that were output by `learn` did not follow the same enhancement
(inheritance) pattern as the policies. This is a real problem and should
be addressed in the near future. Generally, several aspects of the
policy design and hierarchy might deserve a dedicated discussion.
2. Each policy needs to be generic in the stats return type, because one
might want to extend it at some point and then also extend the stats.
Even within the source code base this pattern is necessary in many
places.
3. The interaction between learn and update is a bit quirky, we
currently handle it by having update modify special field inside
TrainingStats, whereas all other fields are handled by learn.
4. The IQM module is a policy wrapper and required a
TrainingStatsWrapper. The latter relies on a bunch of black magic.
They were addressed by:
1. Live with the broken hierarchy, which is now made visible by bounds
in generics. We use type: ignore where appropriate.
2. Make all policies generic with bounds following the policy
inheritance hierarchy (which is incorrect, see above). We experimented a
bit with nested TrainingStats classes, but that seemed to add more
complexity and be harder to understand. Unfortunately, mypy thinks that
the code below is wrong, wherefore we have to add `type: ignore` to the
return of each `learn`
```python
T = TypeVar("T", bound=int)
def f() -> T:
return 3
```
3. See above
4. Write representative tests for the `TrainingStatsWrapper`. Still, the
black magic might cause nasty surprises down the line (I am not proud of
it)...
Closes #933
---------
Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
|
|
|
# Violates Liskov substitution principle
|
|
|
|
def learn( # type: ignore
|
2023-08-25 23:40:56 +02:00
|
|
|
self,
|
Feature/dataclasses (#996)
This PR adds strict typing to the output of `update` and `learn` in all
policies. This will likely be the last large refactoring PR before the
next release (0.6.0, not 1.0.0), so it requires some attention. Several
difficulties were encountered on the path to that goal:
1. The policy hierarchy is actually "broken" in the sense that the keys
of dicts that were output by `learn` did not follow the same enhancement
(inheritance) pattern as the policies. This is a real problem and should
be addressed in the near future. Generally, several aspects of the
policy design and hierarchy might deserve a dedicated discussion.
2. Each policy needs to be generic in the stats return type, because one
might want to extend it at some point and then also extend the stats.
Even within the source code base this pattern is necessary in many
places.
3. The interaction between learn and update is a bit quirky, we
currently handle it by having update modify special field inside
TrainingStats, whereas all other fields are handled by learn.
4. The IQM module is a policy wrapper and required a
TrainingStatsWrapper. The latter relies on a bunch of black magic.
They were addressed by:
1. Live with the broken hierarchy, which is now made visible by bounds
in generics. We use type: ignore where appropriate.
2. Make all policies generic with bounds following the policy
inheritance hierarchy (which is incorrect, see above). We experimented a
bit with nested TrainingStats classes, but that seemed to add more
complexity and be harder to understand. Unfortunately, mypy thinks that
the code below is wrong, wherefore we have to add `type: ignore` to the
return of each `learn`
```python
T = TypeVar("T", bound=int)
def f() -> T:
return 3
```
3. See above
4. Write representative tests for the `TrainingStatsWrapper`. Still, the
black magic might cause nasty surprises down the line (I am not proud of
it)...
Closes #933
---------
Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
|
|
|
batch: MAPRolloutBatchProtocol,
|
2023-08-25 23:40:56 +02:00
|
|
|
*args: Any,
|
|
|
|
**kwargs: Any,
|
Feature/dataclasses (#996)
This PR adds strict typing to the output of `update` and `learn` in all
policies. This will likely be the last large refactoring PR before the
next release (0.6.0, not 1.0.0), so it requires some attention. Several
difficulties were encountered on the path to that goal:
1. The policy hierarchy is actually "broken" in the sense that the keys
of dicts that were output by `learn` did not follow the same enhancement
(inheritance) pattern as the policies. This is a real problem and should
be addressed in the near future. Generally, several aspects of the
policy design and hierarchy might deserve a dedicated discussion.
2. Each policy needs to be generic in the stats return type, because one
might want to extend it at some point and then also extend the stats.
Even within the source code base this pattern is necessary in many
places.
3. The interaction between learn and update is a bit quirky, we
currently handle it by having update modify special field inside
TrainingStats, whereas all other fields are handled by learn.
4. The IQM module is a policy wrapper and required a
TrainingStatsWrapper. The latter relies on a bunch of black magic.
They were addressed by:
1. Live with the broken hierarchy, which is now made visible by bounds
in generics. We use type: ignore where appropriate.
2. Make all policies generic with bounds following the policy
inheritance hierarchy (which is incorrect, see above). We experimented a
bit with nested TrainingStats classes, but that seemed to add more
complexity and be harder to understand. Unfortunately, mypy thinks that
the code below is wrong, wherefore we have to add `type: ignore` to the
return of each `learn`
```python
T = TypeVar("T", bound=int)
def f() -> T:
return 3
```
3. See above
4. Write representative tests for the `TrainingStatsWrapper`. Still, the
black magic might cause nasty surprises down the line (I am not proud of
it)...
Closes #933
---------
Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
|
|
|
) -> MapTrainingStats:
|
2020-09-11 07:55:37 +08:00
|
|
|
"""Dispatch the data to all policies for learning.
|
|
|
|
|
Feature/dataclasses (#996)
This PR adds strict typing to the output of `update` and `learn` in all
policies. This will likely be the last large refactoring PR before the
next release (0.6.0, not 1.0.0), so it requires some attention. Several
difficulties were encountered on the path to that goal:
1. The policy hierarchy is actually "broken" in the sense that the keys
of dicts that were output by `learn` did not follow the same enhancement
(inheritance) pattern as the policies. This is a real problem and should
be addressed in the near future. Generally, several aspects of the
policy design and hierarchy might deserve a dedicated discussion.
2. Each policy needs to be generic in the stats return type, because one
might want to extend it at some point and then also extend the stats.
Even within the source code base this pattern is necessary in many
places.
3. The interaction between learn and update is a bit quirky, we
currently handle it by having update modify special field inside
TrainingStats, whereas all other fields are handled by learn.
4. The IQM module is a policy wrapper and required a
TrainingStatsWrapper. The latter relies on a bunch of black magic.
They were addressed by:
1. Live with the broken hierarchy, which is now made visible by bounds
in generics. We use type: ignore where appropriate.
2. Make all policies generic with bounds following the policy
inheritance hierarchy (which is incorrect, see above). We experimented a
bit with nested TrainingStats classes, but that seemed to add more
complexity and be harder to understand. Unfortunately, mypy thinks that
the code below is wrong, wherefore we have to add `type: ignore` to the
return of each `learn`
```python
T = TypeVar("T", bound=int)
def f() -> T:
return 3
```
3. See above
4. Write representative tests for the `TrainingStatsWrapper`. Still, the
black magic might cause nasty surprises down the line (I am not proud of
it)...
Closes #933
---------
Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
|
|
|
:param batch: must map agent_ids to rollout batches
|
2020-07-21 14:59:49 +08:00
|
|
|
"""
|
Feature/dataclasses (#996)
This PR adds strict typing to the output of `update` and `learn` in all
policies. This will likely be the last large refactoring PR before the
next release (0.6.0, not 1.0.0), so it requires some attention. Several
difficulties were encountered on the path to that goal:
1. The policy hierarchy is actually "broken" in the sense that the keys
of dicts that were output by `learn` did not follow the same enhancement
(inheritance) pattern as the policies. This is a real problem and should
be addressed in the near future. Generally, several aspects of the
policy design and hierarchy might deserve a dedicated discussion.
2. Each policy needs to be generic in the stats return type, because one
might want to extend it at some point and then also extend the stats.
Even within the source code base this pattern is necessary in many
places.
3. The interaction between learn and update is a bit quirky, we
currently handle it by having update modify special field inside
TrainingStats, whereas all other fields are handled by learn.
4. The IQM module is a policy wrapper and required a
TrainingStatsWrapper. The latter relies on a bunch of black magic.
They were addressed by:
1. Live with the broken hierarchy, which is now made visible by bounds
in generics. We use type: ignore where appropriate.
2. Make all policies generic with bounds following the policy
inheritance hierarchy (which is incorrect, see above). We experimented a
bit with nested TrainingStats classes, but that seemed to add more
complexity and be harder to understand. Unfortunately, mypy thinks that
the code below is wrong, wherefore we have to add `type: ignore` to the
return of each `learn`
```python
T = TypeVar("T", bound=int)
def f() -> T:
return 3
```
3. See above
4. Write representative tests for the `TrainingStatsWrapper`. Still, the
black magic might cause nasty surprises down the line (I am not proud of
it)...
Closes #933
---------
Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
|
|
|
agent_id_to_stats = {}
|
2022-02-15 17:56:45 +03:00
|
|
|
for agent_id, policy in self.policies.items():
|
|
|
|
data = batch[agent_id]
|
2020-07-21 14:59:49 +08:00
|
|
|
if not data.is_empty():
|
Feature/dataclasses (#996)
This PR adds strict typing to the output of `update` and `learn` in all
policies. This will likely be the last large refactoring PR before the
next release (0.6.0, not 1.0.0), so it requires some attention. Several
difficulties were encountered on the path to that goal:
1. The policy hierarchy is actually "broken" in the sense that the keys
of dicts that were output by `learn` did not follow the same enhancement
(inheritance) pattern as the policies. This is a real problem and should
be addressed in the near future. Generally, several aspects of the
policy design and hierarchy might deserve a dedicated discussion.
2. Each policy needs to be generic in the stats return type, because one
might want to extend it at some point and then also extend the stats.
Even within the source code base this pattern is necessary in many
places.
3. The interaction between learn and update is a bit quirky, we
currently handle it by having update modify special field inside
TrainingStats, whereas all other fields are handled by learn.
4. The IQM module is a policy wrapper and required a
TrainingStatsWrapper. The latter relies on a bunch of black magic.
They were addressed by:
1. Live with the broken hierarchy, which is now made visible by bounds
in generics. We use type: ignore where appropriate.
2. Make all policies generic with bounds following the policy
inheritance hierarchy (which is incorrect, see above). We experimented a
bit with nested TrainingStats classes, but that seemed to add more
complexity and be harder to understand. Unfortunately, mypy thinks that
the code below is wrong, wherefore we have to add `type: ignore` to the
return of each `learn`
```python
T = TypeVar("T", bound=int)
def f() -> T:
return 3
```
3. See above
4. Write representative tests for the `TrainingStatsWrapper`. Still, the
black magic might cause nasty surprises down the line (I am not proud of
it)...
Closes #933
---------
Co-authored-by: Maximilian Huettenrauch <m.huettenrauch@appliedai.de>
Co-authored-by: Michael Panchenko <m.panchenko@appliedai.de>
2023-12-30 11:09:03 +01:00
|
|
|
train_stats = policy.learn(batch=data, **kwargs)
|
|
|
|
agent_id_to_stats[agent_id] = train_stats
|
|
|
|
return MapTrainingStats(agent_id_to_stats)
|
2023-10-16 20:52:07 -04:00
|
|
|
|
|
|
|
# Need a train method that set all sub-policies to train mode.
|
|
|
|
# No need for a similar eval function, as eval internally uses the train function.
|
|
|
|
def train(self, mode: bool = True) -> Self:
|
|
|
|
"""Set each internal policy in training mode."""
|
|
|
|
for policy in self.policies.values():
|
|
|
|
policy.train(mode)
|
|
|
|
return self
|