Tianshou/tianshou/data/collector.py

165 lines
6.4 KiB
Python
Raw Normal View History

2020-03-14 21:48:31 +08:00
import torch
2020-03-12 22:20:33 +08:00
import numpy as np
from copy import deepcopy
from tianshou.env import BaseVectorEnv
from tianshou.data import Batch, ReplayBuffer
from tianshou.utils import MovAvg
2020-03-13 17:49:22 +08:00
2020-03-12 22:20:33 +08:00
class Collector(object):
"""docstring for Collector"""
2020-03-13 17:49:22 +08:00
2020-03-14 21:48:31 +08:00
def __init__(self, policy, env, buffer, contiguous=True):
2020-03-12 22:20:33 +08:00
super().__init__()
self.env = env
self.env_num = 1
self.buffer = buffer
self.policy = policy
self.process_fn = policy.process_fn
2020-03-14 21:48:31 +08:00
self._multi_env = isinstance(env, BaseVectorEnv)
self._multi_buf = False # buf is a list
# need multiple cache buffers only if contiguous in one buffer
self._cached_buf = []
if self._multi_env:
2020-03-12 22:20:33 +08:00
self.env_num = len(env)
if isinstance(self.buffer, list):
2020-03-13 17:49:22 +08:00
assert len(self.buffer) == self.env_num,\
2020-03-13 21:47:17 +08:00
'# of data buffer does not match the # of input env.'
2020-03-14 21:48:31 +08:00
self._multi_buf = True
elif isinstance(self.buffer, ReplayBuffer) and contiguous:
self._cached_buf = [
deepcopy(buffer) for _ in range(self.env_num)]
2020-03-12 22:20:33 +08:00
else:
raise TypeError('The buffer in data collector is invalid!')
self.reset_env()
self.clear_buffer()
2020-03-13 17:49:22 +08:00
# state over batch is either a list, an np.ndarray, or torch.Tensor
2020-03-12 22:20:33 +08:00
self.state = None
2020-03-13 17:49:22 +08:00
self.stat_reward = MovAvg()
self.stat_length = MovAvg()
2020-03-12 22:20:33 +08:00
def clear_buffer(self):
2020-03-14 21:48:31 +08:00
if self._multi_buf:
2020-03-12 22:20:33 +08:00
for b in self.buffer:
b.reset()
else:
self.buffer.reset()
def reset_env(self):
self._obs = self.env.reset()
self._act = self._rew = self._done = self._info = None
2020-03-14 21:48:31 +08:00
if self._multi_env:
2020-03-13 17:49:22 +08:00
self.reward = np.zeros(self.env_num)
self.length = np.zeros(self.env_num)
else:
self.reward, self.length = 0, 0
2020-03-14 21:48:31 +08:00
for b in self._cached_buf:
b.reset()
def _make_batch(data):
if isinstance(data, np.ndarray):
return data[None]
else:
return [data]
2020-03-12 22:20:33 +08:00
2020-03-13 17:49:22 +08:00
def collect(self, n_step=0, n_episode=0):
assert sum([(n_step > 0), (n_episode > 0)]) == 1,\
"One and only one collection number specification permitted!"
2020-03-14 21:48:31 +08:00
cur_step, cur_episode = 0, 0
2020-03-12 22:20:33 +08:00
while True:
if self.multi_env:
2020-03-13 17:49:22 +08:00
batch_data = Batch(
obs=self._obs, act=self._act, rew=self._rew,
done=self._done, obs_next=None, info=self._info)
2020-03-12 22:20:33 +08:00
else:
2020-03-13 17:49:22 +08:00
batch_data = Batch(
2020-03-14 21:48:31 +08:00
obs=self._make_batch(self._obs),
act=self._make_batch(self._act),
rew=self._make_batch(self._rew),
done=self._make_batch(self._done),
obs_next=None, info=self._make_batch(self._info))
2020-03-12 22:20:33 +08:00
result = self.policy.act(batch_data, self.state)
2020-03-14 21:48:31 +08:00
self.state = result.state if hasattr(result, 'state') else None
2020-03-12 22:20:33 +08:00
self._act = result.act
2020-03-13 17:49:22 +08:00
obs_next, self._rew, self._done, self._info = self.env.step(
self._act)
self.length += 1
self.reward += self._rew
2020-03-14 21:48:31 +08:00
if self._multi_env:
2020-03-12 22:20:33 +08:00
for i in range(self.env_num):
2020-03-14 21:48:31 +08:00
data = {
'obs': self._obs[i], 'act': self._act[i],
'rew': self._rew[i], 'done': self._done[i],
'obs_next': obs_next[i], 'info': self._info[i]}
if self._cached_buf:
self._cached_buf[i].add(**data)
elif self._multi_buf:
self.buffer[i].add(**data)
cur_step += 1
else:
self.buffer.add(**data)
cur_step += 1
if self._done[i]:
cur_episode += 1
self.stat_reward.add(self.reward[i])
self.stat_length.add(self.length[i])
self.reward[i], self.length[i] = 0, 0
if self._cached_buf:
self.buffer.update(self._cached_buf[i])
cur_step += len(self._cached_buf[i])
self._cached_buf[i].reset()
if isinstance(self.state, list):
self.state[i] = None
else:
self.state[i] = self.state[i] * 0
if isinstance(self.state, torch.Tensor):
# remove ref in torch (?)
self.state = self.state.detach()
if n_episode > 0 and cur_episode >= n_episode:
2020-03-12 22:20:33 +08:00
break
else:
2020-03-13 17:49:22 +08:00
self.buffer.add(
self._obs, self._act[0], self._rew,
self._done, obs_next, self._info)
2020-03-14 21:48:31 +08:00
cur_step += 1
2020-03-12 22:20:33 +08:00
if self._done:
cur_episode += 1
2020-03-13 17:49:22 +08:00
self.stat_reward.add(self.reward)
self.stat_length.add(self.length)
self.reward, self.length = 0, 0
2020-03-12 22:20:33 +08:00
self.state = None
if n_episode > 0 and cur_episode >= n_episode:
break
if n_step > 0 and cur_step >= n_step:
break
self._obs = obs_next
self._obs = obs_next
2020-03-13 17:49:22 +08:00
def sample(self, batch_size):
2020-03-14 21:48:31 +08:00
if self._multi_buf:
2020-03-13 17:49:22 +08:00
if batch_size > 0:
lens = [len(b) for b in self.buffer]
total = sum(lens)
ib = np.random.choice(
total, batch_size, p=np.array(lens) / total)
else:
ib = np.array([])
batch_data = Batch()
for i, b in enumerate(self.buffer):
cur_batch = (ib == i).sum()
if batch_size and cur_batch or batch_size <= 0:
batch, indice = b.sample(cur_batch)
batch = self.process_fn(batch, b, indice)
batch_data.append(batch)
else:
batch_data, indice = self.buffer.sample(batch_size)
batch_data = self.process_fn(batch_data, self.buffer, indice)
return batch_data
2020-03-12 22:20:33 +08:00
def stat(self):
2020-03-13 17:49:22 +08:00
return {
'reward': self.stat_reward.get(),
'length': self.stat_length.get(),
}